

Coding for Kids in
C++

Table of Contents
Table of Contents
Disclaimer
Free Gift
Introduction
Why Learn Programming
Setting Up the Workspace
Hello World in C++
Variables
Mathematics Operations
Functions
Conditional Statement
Loops
Arrays
Structures
Final Project

Disclaimer
Copyright © 2021

All Rights Reserved

No part of this eBook can be transmitted or

reproduced in any form, including print,

electronic, photocopying, scanning,

mechanical, or recording, without prior

written permission from the author.

While the author has taken the utmost effort

to ensure the accuracy of the written content,

all readers are advised to follow the

information mentioned herein at their own

risk. The author cannot be held responsible

for any personal or commercial damage

caused by the information. All readers are

encouraged to seek professional advice when

needed.

Free Gift
We do want you to succeed in coding. To
ensure your success, we are giving you a free
list of projects that you can work on once you
are completed with this book.
https://coding.gr8.com/

https://coding.gr8.com/
https://coding.gr8.com/

Introduction
What is Programming
Programming is the art of writing a
computer program. A computer program
is a set of instructions that a machine can
comprehend to perform a certain task.
Computer programming is how humans
communicate with machines.

Computers are pretty good at following the
instructions we give them.

A program is just simply a list of steps that
should be followed to achieve a goal. It is just
like a recipe, to prepare your favorite dish
you just need to follow the instructions on the
recipe.

The only issue is that computers do not speak
English as we do, they speak their own
language. This computer language is known
as machine language.

There is a part on the computer called the
interpreter, which interprets our instructions
to machine language so that the computer is
able to understand the instructions we are
giving it. This interpreter is also known as a
compiler.

A compiler is the interface between the
programming language and the machine. A
programming language is a very simple
language to learn and there are numerous
programming languages out there. We are
only going to learn C++ in this book.

As you know, spoken languages usually have
grammar. Grammar is a way of arranging
words in a language to make sense to others
who speak that language. Programming
languages have grammar as well, which we
call syntax.

In order for the compiler to understand you,
you have to use the proper syntax or else it
will cause an error. We will at first spend a
lot of time learning the syntax of our
programming language.

In summary, we write a program using a
programming language. The programming
languages communicates with the compiler.
The compiler translates the language to
machine language and then runs the program.
The computer reads our instructions and does
what we have told it to do.

Your first programming language is usually
the toughest to learn but after learning it, it
becomes easier to learn other languages.

Why C++
You can do a lot after learning C++. You can
make games, use the Arduino board to make
cool projects or even program planes if you
are allowed to do that. The only limit you
have is your imagination.

The main benefit of C++ is that it is very
portable between operating systems and
compilers. This means that the same code can
be used in Windows, Linux, Opera etc.

C++ has a large community support with

developer forums, online tutorials, Facebook
community groups, which is very significant
for beginner programmers. It’s much easier to
learn as you can ask other people in the
community if you get stuck.

C++ is also very scalable and flexible in
multiple environments. This means that it can
be used by beginner programmers and
advanced professionals for different
purposes. It can also be used to code games,
applications, software and apps.

C++ is wildly used in graphics and is now
used in emerging technologies like image
processing, pattern recognition and in
embedded systems like location tracing.

C++ is more efficient at using computer
memory, so it saves space on your hard
drive.

Why Learn
Programming

Programming at its core is not really about
writing code but thinking of ways to solve
problems. You get to learn and appreciate
that there are different ways to tackle a
problem and sometimes one way is better
than the other. You also learn that breaking a
big problem into small parts makes your
work easier.

It is also about learning how to collaborate
with others. People usually assume that
programmers work by themselves to solve
problems, but programmers act as a team
most of the time. We like sharing what we
have built with others, and this enables us to
learn from one another there by advancing
each other's skills.

In addition, programming teaches you to
never give up easily, because your programs

will never work out the first time you write
them. You will get errors from time to time
but as a programmer you don't let them bring
you down. You pick yourself up when you
fall and try again.

Finally, you feel comfortable in this digital
world where computers run almost
everything. To you it will not be magic as
you know how to use computers to do your
tasks.

At the end of the day even if you don't
become a programmer, you will be able to
know how computers can help you out in
your work and gain all these skills.

Setting Up the
Workspace

In order to write code, you need at least a text
editor and a compiler.

A text editor is just a program that enables
you to write and save code as a file.

Files usually have extensions to their file
names to indicate the kind of file it is. When
writing
C++ files, the files will have the extension
.cpp , example main.cpp

We are going to use an application known as
Code::Blocks to write, compile and run our
programs. Code::Blocks is what is known as
an IDE , integrated development
environment.

An IDE has everything you need to write,
compile and run a program in one place.

Below is a picture of the layout of the
Code::Blocks IDE

Downloading and Installing
Code::Blocks
You will need:

1. A laptop/ Desktop
2. Internet Connection
3. Web browser such as Chrome,

Windows Edge or Firefox

Go to this website and download the
Code::Blocks application:
https://www.fosshub.com/Code-Blocks.html?
dwl=codeblocks-20.03mingw-setup.exe

Just copy and paste the link to the browser

Note: please ensure that you download the
file named Code Blocks Windows 64 bit
(including compiler).

This version includes the compiler which we
need

After that just install the application and open
it when done:

https://www.fosshub.com/Code-Blocks.html?dwl=codeblocks-20.03mingw-setup.exe

You can head over to the Code::Blocks
website at the following link:
https://www.codeblocks.org/ to learn more
about it. It also includes user manual and
links to download the IDE for other operating
systems

Hello World in C++
The first program that all programmers write
when learning a new programming language
is known as Hello World.

It is just basically writing a program that
displays the words 'Hello World' to the
screen. Since we are programmers now, we
say that we are printing the words 'Hello
World' to the screen.

I will be giving out code examples, and you
will have to type the examples in the

https://www.codeblocks.org/

Code::Blocks and click on the build and run
button to compile and execute the code in
order to see the results.

Creating A Project in
Code::Blocks
In order to run code in Code::Blocks we have
to first create a project. So first of all we need
to open up Code::Blocks.

To create a project, click on File > New >
Project

In the pop-up window select Console
application and click on the button Go

Ensure you select C++ in this window
Click Next on the information window

Give the Project a title, for now it is Hello
World. Select which folder it will be saved
at.

Ensure that you have GNU GCC Compiler
selected as the compiler and click on Finish.

Now on the left-hand side, under Hello
World, click on the + icon next to the
Sources folder to reveal the main.cpp file.
Double click on it to display the file on the
editor window on the right-hand side.

The code in the editor looks like the example
below

Code

#include <iostream>
using namespace std;

int main()
{

cout << "Hello World" << endl;

return 0;
}

I am pretty sure that the above code looks
overwhelming when you first see it. But we
are going to understand what it all means by
the end of a few chapters. For now hang in
there as I try to explain the main part of this
program.
The trick with programming is to persevere
as things get easier the more you learn.

Let's first run the code.

Running the code
To run the code, we have to compile it first.

In Code::Blocks, we use the term build
instead of compile. This is because a project
usually consists of multiple C++ files and we
call the process of compiling all of them
building.

There are three buttons on top of the editor
that enable us to build and run our project.

The yellow gear button enables you to build
the project, the green play button enables you
to run the build project, while the third, which
is a combination of the gear and play button,
enables you to build and run the project.
Click on the combination of the two to
execute the project.

A pop-up window will appear with the words
'Hello World' as shown below.

This is what is known as the console or
terminal. The console shows the output in
C++. Just close the window to get rid of it.

NOTE: make sure that you save you file
before building and running it, this can be
done by pressing Control-s (Ctrl+s) after
every change

Explanation of the code
The main line in this program, is the line:

cout << “Hello World” << endl;
`

First of all, notice that the line ends with a
semicolon (;), this is very important as it
indicates the end of this instruction.

cout is just the programmer way of calling a
screen, you can think of it as the short form
of console output.

The symbols << just mean display the things
after me on the screen

'Hello World' is the text that we want to
display on the screen. Notice that it is
surrounded by double quotes. The double
quotes are part of the syntax and are very
important.

We call text surrounded by double quotes a
string.

The next << symbol over means, add what's
after me to the text 'Hello world'. In
programming we call this concatenation that
is adding two strings together

endl, means add a newline, a newline is just
like pressing enter while typing something on
the computer, it takes you to a next line

below the current text

As you can see when writing programs, we
do not just write it in plain English, we follow
some specific rules known as the syntax of
the language.

Exercise
1. Change the text so that the program prints
out your name, build and run the code.

2. Write the line of code cout << “Hello
World”; two times and see what is printed on
the console. How is that different from
writing cout << 'Hello World' << endl; two
times

3. Create a new project and give it any name
you like and store it in a different folder
location.

a. For this new project click the run icon
and notice what happens
b. For this new project click the build
gear icon then the run icon individually
and note what happens.

Variables
In this chapter I will first take you through
the main parts of the computer that are
important in programming.

The main part of the computer is known as
the processor. This is what actually reads
your code and does what you instructed.

In addition, there is a storage area known as
RAM, which stands for Random Access
Memory. This is where everything you need
is stored, even your program is stored here.

You can think of it as a bunch of shelves with
boxes where you can store things. In addition,
these boxes are of different sizes and type.
Hence you can determine what you can store
in them.

In addition, we can label these boxes so that
we can refer to the name later easily.

Variable Assignment

A variable is a name given to a value that is
stored in memory.

A variable name is also known as an
identifier.

You can think of a variable as a box where
we place our value in, and a variable name as
a label we place on the box.

There is also a thing called data type assigned
to each box. A data type is a type of
information that is stored in a box. That
means that the particular variable can store
only a particular type of data. Examples of
data types include strings, numbers, booleans
etc.

Below is an example of a variable
assignment. We write it in Code::Blocks in a
new project called variables, save the file by
pressing Control-S then build and run.

Example code

Above we have declared a variable of the
name radius of data type int, meaning integer
and initialized it to the value 20.

int is what we call the data type. Using the
box analogy a data type determines the type
of the box to store our value. The value which
we store is 20. The variable name is called
radius, which means the label on the box is
radius.
The value of the variable can change
throughout the program as long as it is of the
same data type. In the above program, we
change the value to 40.

This is acceptable as 40 is an int (integer)
data type.

Data types
Below is a list of data types available and the
kind and range of values they represent. Each
data type has an example associated with it.

int

The data type int stands for integer. An
integer is a whole number, meaning that it
cannot have a decimal to it. Examples of
integers are 1,0,45,768,23343 etc.

Example: int radius = 2;

long
The data type long is also a whole number,
but the numbers used can be a lot bigger than
int. long variables can hold up to 20 digits,
while in variables can only hold 10 digits.
For example, below, x, y and result are long
variables that can hold numbers up to 20
digits.

float
Represent numbers with decimals places. See
example below. pi is a float variable with a
value of 3.142 and areaofcircle is another
float variable.

double
A double variable can hold numbers that
contain decimals places with higher precision
and can hold more decimal places (up to 15
decimal places).
In below example, acceleration, mass and
force are three double variables that can each
hold numbers that contain up to 15 decimal
places.

bool
It stands for boolean.
It can only hold two values, the value true or
false.
The boolean variable is used for conditionals.
In the example below, two boolean variables
isHungry and isSleepy are declared.
If isHungry is true, the program prints “I am
hungry” on the screen.
If isSleepy is true, the program prints “I am
sleepy” on the screen.

char
char stands for character. char is a variable
that can hold only one value. The value is a
string of length 1. In below example,
excellent is a char variable that holds the
grade of a student in Mathematics.

string
A string is a variable used to store text. It can
hold a string of any length. In the below
example, yourName is a variable that holds
the value “Catherine”.

Variable names

A C++ variable name must start with either a
letter or an underscore and all the rest of the
characters must be letters, digits or an
underscore.

Examples of valid variable names are:

x
x1
x_1_abc
RATE
bigBonus_

Examples of invalid variable names:

12
3x
%change data
-1 PROG.CPP

The first three, 12 3x %change, are not
allowed because they do not start with a letter
or an underscore.

C++ is also case sensitive, meaning that the
following are three distinct variable names:

Rate
RATE

Rate

Camel Case
Camel case is a programming practice where
multiple words are written without spaces and
the first letter of each word is capitalized
(except for the first word)

The word end of car would become:
endOfCar
Camel case is a commonly used
programming practice to name variables.

Keywords
Keywords are names that cannot be used as
variable names as they are reserved for
programming language syntax.

If you use them as variable names the
compiler will throw errors, or you might end
up changing the basic functionality of some
basic function.

Examples of keywords include the basic data
types, such as int, bool and the rest, and

names such as struct and class.

Comments
Sometimes we want to explain our code so
that others can understand what we did. In the
future that information will help us remember
what we did as we go through the code.

In programming we achieve this by writing
comments within our code. There are two
types of comments, single line comments and
multiline comments.

Single line comments begin with two forward
slashes (//) while multiline comments sit in
between the following symbols: /**/

Examples of comments:

// Test Code

/* Line 1 of Comments
Line 2 of Comments */

Declaring variables

All variables must be declared or defined
before they are used.

To declare/define a variable you just need to
specify a data type and a variable name
followed by a semicolon:

When you declare a variable without giving it
a value, we say that the variable is
uninitialized.
Uninitialized variable will have a random
value in it.

Giving an uninitialized variable a value is
known as initializing it.

You can also declare and initialize a variable
at the same time.

In this example we are going to make use of
comments and declare some variables whose
value we will print to the console

Create a new project in Code::Blocks, write
the following code, build and run it.

Example code

Explanation
In the above program, in the main block of
code, we first begin by writing a multiline
comment by writing in between /**/.
We then declare two variables of type int
which are length and width without
initializing them, which we do later.

We then declare and initialize the variable
depth of type int to 40. Finally, we print the
values of length, width and depth to the
console each on its own separate line.

Exercise
1. Write a program that contains

statements that output the values of
five or six variables that have been
defined, but not initialized. Compile
and run the program. What is the
output? Explain.

2. Create a string variable with your
name and print it to the console.

3. Create a char variable and print it to
the console

4. Create a bool variable and print it to
the console

5. Create a float variable and print it to
the console

6. Create a long variable named, time
of day, in camel case and print it to
the console

Mathematics Operations
In this section we will make a small
calculator that only performs multiplication
of two numbers. The program will ask us for
two numbers to multiply and print the result
of multiplication.

First, we will go through how to perform
mathematic operations in C++

Addition
Addition is done using the + operator

Addition Example code

The output of the code will be 3, which is the
sum of x and y.

Subtraction
Subtraction is done using the - operator

Subtraction Example code

The output of the code will be -1

Multiplication
Multiplication is done using the * operator

Multiplication Example code

The output of the code will be 6

Division
Division is done using the / operator, this
returns the quotient of the division

Division Example code

The output of above code will be 1.5

Remainder
In order to get the remainder of a division use
the modulo operator which is represented by
the symbol %.

The output of the code will be 1, which is the
reminder when x is divided by y.

Getting Input from users
So far, we have just been printing things to
the console without any input from the user.
In this section we are going to make our
program more exciting by asking for input
from users.

cin
cin is use to accept input from the keyboard,
it can be thought of as standing for console
input

Example code

Explanation
Here we first create a variable called num of
type int which we will use to store the value
we get from the keyboard input.

We the ask the user for some input, and just
print it back to the console: 'You entered: 1',
if you type in 1 in the console

A simple calculator
We will have to ask the user for two numbers
to multiply, and the show the result of
multiplication to the user.

Example Code

Explanation
We first declare two int type variables that
will store the use input that is num1 and
num2

We prompt the user for num1, then store it in
the corresponding variable using cin. We do
the same to num2

We then perform multiplication on the two
and display the result to the user

Exercise
1. Convert each of the following
mathematical formulas to a C++ expression,
each variable getting its value from the user
input

1. 3x
2. 3x + y
3. (x + y)/7
4. (3x + y) / (z + 2)

2. Write a program that takes in school marks
in 6 subjects using 6 input variables.
Calculate total marks and average marks for
the subjects
3. Write a program that takes in a integer
from the user and determines whether it is an
even number or an odd number. Hint: Use
modulo

Functions
A function is a group of lines of code that
perform a given task. Each function has been
assigned a name and will be referenced by
that name in the program.

In C++ functions are expected to return a
value and the data type of the value to be
returned is usually indicated when defining a
function.

In this section we will write a function that
calculates the area of a rectangle

Example of a function
The area of a rectangle is equal to its length
multiplied by width, so below is a function to
calculate it

Write this before the main function as so:

Explanation
int is the data type of the value to be returned,
so we expect the function to give us back an
integer when we run it. This is indicated by
the line return area; just above the closing
curly brace in line 7. Notice the variable area
is declared as an integer type since that is the
variable that the function returns.

areaOfRectangle is the name we give to our
function. Notice that it is written in camel
case.

What follows the name of a function is a pair
of parentheses, in the parenthesis we declare

two variables, and these variables are known
as parameters. In the example above, length
and width are the parameters.

They will hold values we pass to the function
when we run it and they can be accessed with
the function’s block of code.

We then have our code in curly braces so as
to mark it as the lines of code associated with
that function name.

Finally, we have the return statement.

Running a function
Look at the code below

Explanation

When we want to run a function, we usually
say that we are calling that function.

Some functions take in values when there are
being called like ours does, we call these
values arguments of the function.

Notice the syntax used to pass arguments to
functions, we first write the function name
and in between an opening and closing
parenthesis we write the arguments, separated
by commas.

So, in our example, we are calling the
function areaOfRectangle passing in the two
arguments, that is, 4 and 5.
We expect the function to return a value,
which is the area that has been calculated and
the value of the area calculated to be of the
data type integer.

For this reason, we assign the returned value
to the variable named area of type int.

We then print the result to the screen. In this
case, the area of the rectangle is 20 so that is
the output shown on the screen.

Void Functions
The functions known as void functions are
functions that do not return anything after
being called

Example code

Explanation
Notice that the specified return type is void
and that we do not use the return keyword in
the body of the function.

Apart from that there are not any other
differences with the way we define other non-
void functions.

Exercise

1. Create a function called
Descending() that takes four
arguments. Each argument is a
number of type int. The function
returns true if the four numbers are
in descending order; otherwise, it
returns false. For example,
Descending(4, 3, 3, 1) and
Descending(3, 2, 2, 1) both return
true, whereas Descending(2, 1, 3, 2)
returns false.

2. Create a function called isOdd()that

takes in one argument of type int
and returns a Boolean value. The
function returns true if the input is
an odd number. It returns false if it
is an even number.

3. What is the output of the following
program?

#include <iostream>
using namespace std;
void sayhi();
void hide(int audiencenumber);
int main()
{

sayhi();
hide(6);
cout << "Extra time:\n";
hide(2);
sayhi();
cout << "End of program.\n";
return 0;

}
void sayhi()
{

cout << "Hello\n";
}
void hide(int audiencenumber)
{

if (audiencenumber < 5)
return;
cout << "Bye\n";

}

4. Write a function that calculates the
perimeter of a circle, that has a
parameter called radius of type int
and returns type double. Use pi as a
double variable of value 3.142.

A Short message from the Author:

Hey, are you enjoying the book? I’d love to
hear your thoughts!

Many readers do not know how hard reviews
are to come by, and how much they help an
author.

I would be incredibly thankful if you could
take just 60 seconds to write a brief review on
Amazon, even if it’s just a few sentences!

>> Click here to leave a quick review

Thank you for taking the time to share your
thoughts!

https://www.amazon.com/review/create-review/ref=cm_cr_dp_d_wr_but_top?channel=glance-detail&ref_=cm_cr_dp_d_wr_but_top&asin=B07R6QSL9M&_encoding=UTF8&
https://www.amazon.com/review/create-review/ref=cm_cr_othr_d_wr_but_top?ie=UTF8&channel=glance-detail&asin=B09MDJ86R9

Conditional Statement
We usually want to do something only when
a certain condition is true. For example, if it
is sunny outside then we go out and play, else
we stay at home.

The statement, it is sunny outside, can only
either be true or false.

In programming we have a data type that can
only store the value true or false, this data
type is known as a boolean. In C++ we
usually shorten it to bool.

In addition, we sometimes want to run lines
of code only when a certain condition is true,
and we achieve this using if statement. Let's
do an example, which will make it easier to
understand

Example Code

Explanation
In the above example, we first create a
variable called sunny that holds a boolean
value since it has the data type bool.

Using the if statement we check whether it is
true that it is sunny, if it is, we print "You can
go outside to play" to the screen else we print
"Don't go outside to play"

Exercise

Change the variable sunny to be false and see
what will be printed.

Comparison Operators
Comparison operators compare two values
and return either true or false

Examples of comparison operators are:

Less than (<)
It returns true if the value on the left is less
than the value on the right. Otherwise, it
returns false.

Greater than (>)
It returns true if the value on the left is greater
than the value on the right. Otherwise, it
returns false.

Less than or equal to (<=)
It returns true if the value on the left is less
than or equal to the value on the right.
Otherwise, it returns false.

Greater than or equal to (>=)
It returns true if the value on the left is greater
than or equal to the value on the right.
Otherwise, it returns false.

Equal to (==)
It returns true if the value on the left is equal
to the value on the right. Otherwise, it returns
false.

Not equal to (!=)
It returns true if the value on the left is not
equal to the value on the right. Otherwise, it
returns false.

Example of use of comparison
operators
Let's say you want to print to the screen the
string ‘x is greater than 5’ if x is indeed
greater than 5 else you print ‘x is less than or
equal to 5’

Building Boolean Expressions
A Boolean expression is any expression that
has one of two values. It is either true or
false. It is basically an expression that
compares two values and returns true/false.

Two comparisons can be combined using the
“and” operator, which is && in C++. For
example, the following Boolean expression is
true provided a is bigger in value than 5 and a
is smaller than 10:

(5 < a) && (a < 10)

The above operation returns true if a is
between 5 and 10 (not including 5,10).

When two comparisons are connected using a
&&, the entire expression is true, provided
both comparisons are true; otherwise, the
entire expression is false.

You can also combine two comparisons using
the “or” operator, which is spelled || in C++.
For example, the following is true provided b
is less than 2 or b is greater than 9:

(b < 2) || (b > 9)

The above expression returns true if b is less
than 2 or b is greater than 9.

In an expression that uses || operation, the
expression is true provided that either of the
comparisons is true. If both expressions are
false, then the expression is false.

A Boolean expression can be negated using
the ! operation. For example,

!(a > b)
Returns true if “a is not greater than b”.

In most cases, there is no need to use the
exclamation (!) operator.

For example,
!(a > b) is the same as to a <= b

Truth Tables
The following are known as truth tables. It
indicates all the possibilities that a
combination of each expression can be and
the resulting boolean value.

AND

expression1 expression2 expression1 &&
expression2

true True True

true False False

false True False

false False False

OR

expression1 expression2 expression1 ||
expression2

true True True

true False True

false True True

false False False

NOT

expression ! expression

true False

false True

Example of Boolean expressions
Let’s say that you only buy food when you
are hungry, and you have money. To
represent this in code it will be something
like this.

Example

Explanation
The string ‘I will buy food’ only gets printed
when the variables isHungry and hasMoney
are true. Otherwise, the string ‘I can’t buy
food’ is printed.
Change the program to print ‘I will buy food’
if isHungry is true or hasMoney is true.

Exercise

1. Write a program that outputs the
word Small if the score is less than
10 and Big if the value of the score
is bigger than 100.

2. Write a program that outputs the
word Success provided the variable
test is greater than or equal to 50
and the value of the variable
codingPrograms is greater than 5.
Otherwise, the programs output the
word failure. The variables test and
codingPrograms are both of type
int.

3. Write a program that outputs the
word Danger if the variable temp is
greater than 37, or the value of the
variable press is greater than 1, or
both. Otherwise, the program prints
the word Great. The variables temp
and press are both of type int.

Loops
Loops enable us to repeat a set of instructions
a fixed number of times. It can also be
repeated forever if we wanted to.

There are usually two types of loops, finite
loops and infinite loops.

Finite loops repeat the set of instructions a
countable number of times while infinite
loops repeat a set of instructions forever.

How we specify loops
In C++ there are two ways of declaring loops.
One way is to use the for keyword and the
other is to use the while keyword.

For loops
Let's say you want to print out your name 10
times to the console, you might think of
writing out the instruction 'cout << "My

name"<< endl;' 10 times.
Using For loops is a good way to prevent
repetition of the same statement and shorten
the code.

Example

Explanation

To use the for loop we specify the number of

times we want to run the block of code
associated with that for loop.

The block of code associated with the for
loop is in between the opening and closing
curly braces
{
}

In our code the associated block of code has
only the line: cout << "My name" << endl;

Inside the opening and closing parenthesis
associated with the for keyword we specify
three important things separated by two
semicolons

The first is what number to begin counting at,
for us, we begin counting from 1 so we
declare the integer variable i holding the
value 1.

The second, separated from the first by a
semicolon, is the condition that should be true
in order for the block of code associated with
for loop to be executed. We usually use
comparison operators such as >, <, <=, >= in
this section.

In our case , i <= 10, means only run the
block of code if the value of the variable i is
less or equal to 10, otherwise stop the loop
and proceed with the rest of the program.

Finally, the third part, separated by a
semicolon from the second part, increments
the count variable, in our case we increment
by 1 using the special notation i++

In addition, this increment occurs after the
block of code runs

Exercise
1. Change the program to loop over our text
100 times

Example Using Counter Inside
Loop
We can use our declared integer inside the
associated block of code, for example, we
could print the value 1 to 10 with the code
below.

while loops
while loops are similar to for loops, with the

only difference being that it is only the
condition to be met that is in the parenthesis
associated with the while keyword.

Example

Explanation

We first declare where we will start counting
from in the line: int i = 1;

while(i <= 10), means while the value of the
variable i is less or equal to 10 run the
associated block of code.

Notice that just before the closing brace we
increment the value of i by 1.

The while loop then repeats to check whether

i is less or equal to 10, if it is, it executes the
associated block of code. If i is greater than
10, the block of code is not executed, and the
program goes to the next instructions

Infinite loops
Infinite loops occur when the condition that
for loop or while loop checks in order to
decide whether to run their associated block
of code, is always true.
So, it basically runs forever.

Example

Explanation
This will run forever as the condition is
always true

Infinite For Loop
An infinite for loop is defined as shown
below:

Explanation

Notice that to declare an infinite for loop, you
just need to have two semicolons in the
parentheses associated with the for keyword,
that is:

for(;;){
 //this code will run infinitely

}

Exercise

1. Rewrite the following loops as for
loops.

a.
int x = 2;
while(x <= 200)
{

if (x < 10 && x != 1)
cout << ‘YY’;
x=x+2;

}
b.

int a = 2;
while(a <=21)
{

cout << ‘YY’;
a++;

}

2. What is the output of the following
(when embedded in a complete
program)?

for (int ctr = 2; ctr < 15; ctr++)
cout << (3 + ctr) << endl;

3. What is the output of the following?

for (int b = 50; b > 2; b = b - 3)
{

cout << "Hi ";
cout << b << endl;

}

4. Write a program that create prints
out your name an infinite number of
times using a for loop.

Arrays
An array is a collection of values of the same
data type.

Each value in the collection has an index
associated with it that can be used to retrieve
the value.

Indices in C++ start from 0 not 1, this is
known as zero based indexing. It is like
starting to count from 0 and not 1.

Exercise

How many items do I have, if I gave them
labels from 0 to 4?

Answer: 5

Declaring an array
When declaring an array, we begin by
specifying the data type of the values that the
array will hold followed by the variable name
of the array then by the number of elements it
will hold in square brackets.

For example:

int size[4];
size = {1,2,3,4};

Explanation
Above we have declared an array with the
variable name size which holds 4 values of
the data type integer

int size[4];

int -> data type of elements held by the

array
size -> name of the array
[4] -> specification of the number of
elements held by the array

The statement, size = {1, 2, 3, 4}, initializes
an array, which simply means assigning a
value to the array variable.

You can also declare and initialize an array at
the same time as shown below:

Example
int size[4] = { 1,2,3,4};
int size[] = { 1,2,3,4};

If the arguments are less, the rest are
initialized to the zero value of the data type.

Retrieving values from an array
Values are retrieved from an array by
specifying the location of the needed value
using an index

Example
Let's say we want to retrieve the first element
in an array, our code would be:

Explanation
The line, int firstElement = size[0]; ,
retrieves the first element in the array.

Notice that since in C++ we start counting
from 0, the index of the first element in the
array is 0.
The program prints out 1 since the 1st element
in size is 1.

Exercise
Retrieve the fourth element. (Hint the index is
not 4)

Looping through elements in an
array
If we want to retrieve all the elements in an
array, we can use loops to do that.
We will use for loop since it is the simplest
way to go about it.

Example

Explanation
Notice that we start our counter from 0 and
our condition is that the value of the counter i
should be less than 4, which is the size of the
array.

Exercise
This is to be done in one file:

1. Write a function that calculates the
area of a circle.

2. Create an array that holds 10 circle
radii that you want to know the
areas of.

3. Loop through the array to calculate
the areas of the circles and print the
result to the screen

4. Calculate only the area of the circle
in the fourth position in the array.

5. Create an array of the character of
your name and print all of the
characters to the screen.

Structures
A structure is a group of values that enables
you to order data in a logical manner, that is,
in a manner that makes sense to you.

Let's say that you want to collect information
about your friends’ age, weight and height.

With the current knowledge we have we
would do it something like this:

Example code

Structures make grouping such information
easier.

Let's first define a structure.

Structure definition

Explanation
A structure is defined outside any function
definition, including the main function.

We use the keyword struct to define a
structure followed by the name we want to
give the structure, this name is known as a
structure tag

Inside the curly braces associated with the
structure tag, we declare structure variables
which are also known as member names. In
the above example, age, weight and height
are member names.

Notice that there is a semicolon after the
closing curly brace.

Initializing structures

Explanation
By creating a structure, we have created a
new data type.

As we usually do when we declare any
variables, we start with the data type that it
will hold.

In curly braces we pass in the arguments to
be values for the declared structure variables.

The order of the arguments is important.

You will get an error if there are more
initializer values than structure members.

If the values are less, the last ones that aren't
in the list are initialized to zero.

Accessing struct member values
To access a structure's member variables
value, you use the dot operator as shown
below

Example code

The output for kevin.age and jessica.age are
10 and 15 in the output above. Age is the first
member of the structure. 10 and 15 are the
first numbers in the structure initialization,
thus they reference Kevin and Jessica’s age.

Exercise
Create a structure called Date, that has the
member variables year, month and day.
Initialize it with your current date and print
all the values to the screen.

Final Project
In the final project, we aim to utlize a lot of
the skills we’ve learned throughout the book.

Tasks
Design a student management system. New
students are added with information entered
including their name and registration number.
The user can search the particular student on
the basis of registration number. The user can
check the entire list of students and delete a
particular student in the basis of registration
number and exit the program.

The code below performs the task; and all the
tasks are explained clearly after the program.

Code

Output

Add a record in array
We have declared two arrays for student
names and student registration numbers. The

two arrays are called registrationNum and
nam.
If the user enters the number ‘1’ then
program will ask user to enter student name
and registration number. The user then enters
the name and registration number. It is stored
in their respective array. There is count
variable called index which counts the
number of students which are created. The
index is increased by 1 each time a student is
added.
The process of adding the record is shown in
the part of the code below.

Search record from the array
A user can search a particular student using
their enrolled registration number by pressing
‘2’ at the start of the program.
The program first checks if the student array
is empty. If the array is not empty, the user
then enters the registration number. The
program compares the user-entered
registration with registration numbers
existing in array. It does this using the
function searchRecord().

The function searchRecord() takes in an
array of names (name[]) and an array of
registration numbers (regnum[]) as
arguments. It also takes in two variables for
registration number reg and index in.
reg is the registration number we are using to
search for the student record, while in is the
number of records.
The function search the array regum[] using a
for loop for the registration number reg.
If reg is found, the function prints out the
student registration number and name.
If reg is not found, the function prints out
“Record is not found”

View all the records
To view all the record of students, the user
presses ‘3’ at the start of the program. There
is count variable called index which count the
number of students. A for loop is used to
retrieve each student record and print out
each student name and registration number.
The loop continues till it reaches the value of
index which indicates that we are at the end
of the array.

Delete a record
If the user presses ‘4’ at the start of the

program, the user can delete a particular
student on the basis of registration number.
The user first enters the registration number
into a variable called renum. The program
will check if student array is empty then
display there is no record in the system if it is
empty. If the array is not empty then the
program compares the renum with
registration numbers which are in array
registrationNum. This is done using a for
loop that iterates through the array. If the
student is found then the record is deleted
from the array by declaring the relevant name
and registrationNum to null.
If the student record is not found then the
program prints “Record is not found”.

Exit
If the user enter the number ‘5’ then

simply break from the loop.
The variable cont is set to false. This
terminates the program as the program is in a
while loop that continues while cont is true.

Conclusion
Thanks for reading this book.
I hope this has helped you get started
with programming in C++.

If you’d like to take the next steps in
C++, I’d suggest the books below on
Amazon.

Learn C++ Quickly
https://www.amazon.com/Learn-
Quickly-Beginners-Programming-
Hands-ebook/dp/B08DZ3NY6Z/

Programming: Principles and Practice
using C++
https://www.amazon.com/Programming-
Principles-Practice-Using-
2nd/dp/0321992784/

If you’re interested in Javascript or

https://www.amazon.com/Learn-Quickly-Beginners-Programming-Hands-ebook/dp/B08DZ3NY6Z/
https://www.amazon.com/Learn-Quickly-Beginners-Programming-Hands-ebook/dp/B08DZ3NY6Z/
https://www.amazon.com/Programming-Principles-Practice-Using-2nd/dp/0321992784/
https://www.amazon.com/Programming-Principles-Practice-Using-2nd/dp/0321992784/

Python, I have a few books on my
product page below.

Bob Mather product page
https://www.amazon.com/kindle-
dbs/entity/author/B07HHQZC4Y

https://www.amazon.com/kindle-dbs/entity/author/B07HHQZC4Y
https://www.amazon.com/kindle-dbs/entity/author/B07HHQZC4Y

The end… almost!

Reviews are not easy to come by.

As an independent author with a tiny
marketing budget, I rely on readers, like you,
to leave a short review on Amazon.

Even if it’s just a sentence or two!

So if you enjoyed the book, please...

>> Click here to leave a brief review on
Amazon.

I am very appreciative for your review as it
truly makes a difference.

Thank you from the bottom of my heart for
purchasing this book and reading it to the

https://www.amazon.com/review/create-review/ref=cm_cr_dp_d_wr_but_top?channel=glance-detail&ref_=cm_cr_dp_d_wr_but_top&asin=B07R6QSL9M&_encoding=UTF8&
https://www.amazon.com/review/create-review/ref=cm_cr_othr_d_wr_but_top?ie=UTF8&channel=glance-detail&asin=B09MDJ86R9

end.

	Table of Contents
	Disclaimer
	Free Gift
	Introduction
	Why Learn Programming
	Setting Up the Workspace
	Hello World in C++
	Variables
	Mathematics Operations
	Functions
	Conditional Statement
	Loops
	Arrays
	Structures
	Final Project

