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Preface

Most book readers are likely to concur with the idea that the least read
portion of any book is the preface. With that in mind, and the fact that
the reader has indeed taken the trouble to read up to this sentence, we prom-
ise to leave no stone unturned to make this preface as lively and entertain-
ing as possible. For your reading pleasure, here is a nice story with a picture
thrown in for good measure. Enjoy!

Once upon a time, there were six blind men. The blind men wished to
know what an elephant looked like. They took a trip to the forest and with
the help of their guide found a tame elephant. The first blind man walked
into the broadside of the elephant and bumped his head. He declared that
the elephant was like a wall. The second one grabbed the elephant’s tusk and
said it felt like a spear. The next blind man felt the trunk of the elephant and
was sure that elephants were similar to snakes. The fourth blind man hugged
the elephant’s leg and declared the elephant was like a tree. The next one
caught the ear and said this is definitely like a fan. The last blind man felt the
tail and said this sure feels like a rope. Thus the six blind men all perceived
one aspect of the elephant and were each right in their own way, but none
of them knew what the whole elephant really looked like.
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Oftentimes, the market poses itself as the elephant. There are people
who say that predicting the market is like predicting the weather, because
you can do well in the short term, but where the market will be in the long
run is anybody’s guess. We have also heard from others that predicting the
market short term is a sure way to burn your fingers. “Invest for the long
haul” is their mantra. Some will assert that the markets are efficient, and yet
some others would tell you that it is possible to make extraordinary returns.
While some swear by technical analysis, there are some others, the so-called
fundamentalists, who staunchly claim it to be a voodoo science. Multiple
valuation models for equities like the dividend discount model, relative val-
uation models, and the Merton model (treating equity as an option on firm
value) all exist side by side, each being relevant at different times for dif-
ferent stocks. Deep theories from various disciplines like physics, statistics,
control theory, graph theory, game theory, signal processing, probability,
and geometry have all been applied to explain different aspects of market
behavior.

It seems as if the market is willing to accommodate a wide range of
sometimes opposing belief systems. If we are to make any sense of this smor-
gasbord of opinions on the market, we would be well advised to draw com-
fort from the story of the six blind men and the elephant. Under these
circumstances, if the reader goes away with a few more perspectives on the
market elephant, the author would consider his job well done.
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Introduction

We start at the very beginning (a very good place to start). We begin with
the CAPM model.

THE CAPM MODEL

CAPM is an acronym for the Capital Asset Pricing Model. It was originally
proposed by William T. Sharpe. The impact that the model has made in the
area of finance is readily evident in the prevalent use of the word beta. In
contemporary finance vernacular, beta is not just a nondescript Greek let-
ter, but its use carries with it all the import and implications of its CAPM
definition.

Along with the idea of beta, CAPM also served to formalize the notion
of a market portfolio. A market portfolio in CAPM terms is a portfolio of
assets that acts as a proxy for the market. Although practical versions of
market portfolios in the form of market averages were already prevalent at
the time the theory was proposed, CAPM definitely served to underscore the
significance of these market averages.

Armed with the twin ideas of market portfolio and beta, CAPM at-
tempts to explain asset returns as an aggregate sum of component returns.
In other words, the return on an asset in the CAPM framework can be sep-
arated into two components. One is the market or systematic component,
and the other is the residual or nonsystematic component. More precisely, if
7, is the return on the asset, 7,, is the return on the market portfolio, and the
beta of the asset is denoted as f3, the formula showing the relationship that
achieves the separation of the returns is given as

r, = Pr, +9, (1.1)

Equation 1.1 is also often referred to as the security market line (SML). Note
that in the formula, Br,, is the market or systematic component of the return.
B serves as a leverage number of the asset return over the market return. For
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instance, if the beta of the asset happens to be 3.0 and the market moves
1 percent, the systematic component of the asset return is now 3.0 percent.
This idea is readily apparent when the SML is viewed in geometrical terms
in Figure 1.1. It may also be deduced from the figure that f is indeed the
slope of the SML.

6, in the CAPM equation is the residual component or residual return
on the portfolio. It is the portion of the asset return that is not explainable
by the market return. The consensus expectation on the residual component
is assumed to be zero.

Having established the separation of asset returns into two components,
CAPM then proceeds to elaborate on a key assumption made with respect to
the relationship between them. The assertion of the model is that the mar-
ket component and residual component are uncorrelated. Now, many a
scholarly discussion on the import of these assumptions has been conducted
and a lot of ink used up on the significance of the CAPM model since its in-
troduction. Summaries of those discussions may be found in the references
provided at the end of the chapter. However, for our purposes, the preced-
ing introduction explaining the notion of beta and its role in the determina-
tion of asset returns will suffice.

Given that knowledge of the beta of an asset is greatly valuable in the
CAPM context, let us discuss briefly how we can go about estimating its
value. Notice that beta is actually the slope of the SML. Therefore, beta may
be estimated as the slope of the regression line between market returns and
the asset returns. Applying the standard regression formula for the estima-
tion of the slope we have

il wy|

Asset Return

v

rm
Market Return

FIGURE 1.1 The Security Market Line.
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B cov(rprm) (1.2)
B var(r,,) ’

that is, beta is the covariance between the asset and market returns divided
by the variance of the market returns.

To see the typical range of values that the beta of an asset is likely to as-
sume in practice, we remind ourselves of an oft-quoted adage about the
markets, “A rising tide raises all boats.” The statement indicates that when
the market goes up, we can typically expect the price of all securities to go
up with it. Thus, a positive return for the market usually implies a positive
return for the asset, that is, the sum of the market component and the resid-
ual component is positive. If the residual component of the asset return is
small, as we expect it to be, then the positive return in the asset is explained
almost completely by its market component. Therefore, a positive return in
the market portfolio and the asset implies a positive market component of
the return and, by implication, a positive value for beta. Therefore, we can
expect all assets to typically have positive values for their betas.

MARKET NEUTRAL STRATEGY

Having discussed CAPM, we now have the required machinery to define
market neutral strategies: They are strategies that are neutral to market re-
turns, that is, the return from the strategy is uncorrelated with the market re-
turn. Regardless of whether the market goes up or down, in good times and
bad the market neutral strategy performs in a steady manner, and results are
typically achieved with a lower volatility. This desired outcome is achieved
by trading market neutral portfolios. Let us therefore define what we mean
by a market neutral portfolio.

In the CAPM context, market neutral portfolios may be defined as port-
folios whose beta is zero. To examine the implications, let us apply a beta
value of zero to the equation for the SML. It is easy to see that the return on
the portfolio ceases to have a market component and is completely deter-
mined by 6,, the residual component. The residual component by the CAPM
assumption happens to be uncorrelated with market returns, and the port-
folio return is therefore neutral to the market. Thus, a zero beta portfolio
qualifies as a market neutral portfolio.

In working with market neutral portfolios, the trader can now focus on
forecasting and trading the residual returns. Since the consensus expectation
or mean on the residual return is zero, it is reasonable to expect a strong
mean-reverting behavior (value oscillates back and forth about the mean
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value) of the residual time series.! This mean-reverting behavior can then be
exploited in the process of return prediction, leading to trading signals that
constitute the trading strategy.

Let us now examine how we can construct market neutral portfolios
and what we should expect by way of the composition of such portfolios.
Consider a portfolio that is composed of strictly long positions in assets. We
expect that beta of the assets to be positive. Then positive returns in the
market result in a positive return for the assets and thereby a positive return
for the portfolio. This would, of course, imply a positive beta for the port-
folio. By a similar argument it is easy to see that a portfolio composed of
strictly short positions is likely to have a negative beta. So, how do we con-
struct a zero beta portfolio, using securities with positive betas? This would
not be possible without holding both long and short positions on different
assets in the portfolio. We therefore conclude that one can typically expect
a zero beta portfolio to comprise both long and short positions. For this rea-
son, these portfolios are also called long—short portfolios. Another artifact of
long—short portfolios is that the dollar proceeds from the short sale are used
almost entirely to establish the long position, that is, the net dollar value of
holdings is close to zero. Not surprisingly, zero beta portfolios are also
sometimes referred to as dollar neutral portfolios.

Example
Let us consider two portfolios A and B, with positive betas 8, and Bz and
with returns 7, and 7,
7y =B, +6, (1.3)
1y = Byr,, + 6y
We now construct a portfolio AB, by taking a short position on 7 units of
portfolio A and a long position on one unit of portfolio B. The return on this

portfolio is given as 745 = —7.74 + r. Substituting for the values of 7, and 7y,
we have

Tap = (7B, + Bg).t,, + (=1.0, + 65) (1.4)

IThe assertion of CAPM that the expected value of residual return is zero is rather
strong. It has been discussed extensively in academic literature as to whether this pre-
diction of CAPM is indeed observable. It is therefore recommended that we explic-
itly verify the mean-reverting behavior of the spread time series. In later chapters we
will discuss methods to statistically check for mean-reverting behavior.
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Thus, the combined portfolio has an effective beta of -8, + B5. This value
becomes zero, when r = 85/8,. Thus, by a judicious choice of the value of r
in the long-short portfolio we have created a market neutral portfolio.

T AM NEI'RER LoNG NoR SHORT. T AM
PoTH BUYER AND SELLER. T GVESS IN THAT »
SENSE, T'M BoTH Lot AD SHORT. T

P NETTHER BULL N ABEAR...

PrFuL] THPE HES NoT
RUNNING  FoR oFFICE [

GOCKTAIL CORNER

In cocktail situations involving investment professionals, it is fairly
common to hear the terms long—short, market neutral, and dollar neu-
tral investing bandied about. Very often they are assumed to mean the
same thing. Actually, that need not be the case. You could be long—
short and dollar neutral but still have a nonzero beta to the market. In
which case you have a nonzero market component in the portfolio
return and therefore are not market neutral.

If you ever encountered such a situation, you could smile to your-
self. Tempting as it might be, I strongly urge that you restrain yourself.
But, of course, if you are looking to be anointed the “resident nerd,”
you could go ahead and launch into an exhaustive explanation of the
subtle differences to people with cocktails in hand not particularly
looking for a lesson in precise terminology.
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PAIRS TRADING

Pairs trading is a market neutral strategy in its most primitive form. The
market neutral portfolios are constructed using just two securities, consist-
ing of a long position in one security and a short position in the other, in a
predetermined ratio. At any given time, the portfolio is associated with a
quantity called the spread. This quantity is computed using the quoted prices
of the two securities and forms a time series. The spread is in some ways re-
lated to the residual return component of the return already discussed. Pairs
trading involves putting on positions when the spread is substantially away
from its mean value, with the expectation that the spread will revert back.
The positions are then reversed upon convergence. In this book, we will look
at two versions of pairs trading in the equity markets; namely, statistical ar-
bitrage pairs and risk arbitrage pairs.

Statistical arbitrage pairs trading is based on the idea of relative pricing.
The underlying premise in relative pricing is that stocks with similar char-
acteristics must be priced more or less the same. The spread in this case may
be thought of as the degree of mutual mispricing. The greater the spread, the
higher the magnitude of mispricing and greater the profit potential.

The strategy involves assuming a long—short position when the spread is
substantially away from the mean. This is done with the expectation that the
mispricing is likely to correct itself. The position is then reversed and prof-
its made when the spread reverts back. This brings up several questions:
How do we go about calculating the spread? How do we identify stock
pairs for which such a strategy would work? What value do we use for the
ratio in the construction of the pairs portfolio? When can we say that the
spread has substantially diverged from the mean? We will address these
questions and provide some quantitative tools to answer them.

Risk arbitrage pairs occur in the context of a merger between two com-
panies. The terms of the merger agreement establish a strict parity relation-
ship between the values of the stocks of the two firms involved. The spread
in this case is the magnitude of the deviation from the defined parity rela-
tionship. If the merger between the two companies is deemed a certainty,
then the stock prices of the two firms must satisfy the parity relationship,
and the spread between them will be zero. However, there is usually a cer-
tain level of uncertainty on the successful completion of a merger after the
announcement, because of various reasons like antitrust regulatory issues,
proxy battles, competing bidders, and the like. This uncertainty is reflected
in a nonzero value for the spread. Risk arbitrage involves taking on this un-
certainty as risk and capturing the spread value as profits. Thus, unlike the
case of statistical arbitrage pairs, which is based on valuation considerations,
risk arbitrage trade is based strictly on a parity relationship between the
prices of the two stocks.
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The typical modus operandi is as follows. Let us call the acquiring firm
the “bidder” and the acquired firm the “target.” On the eve of merger an-
nouncement, the bidder shares are sold short and the target shares are
bought. The position is then unwound on completion of the merger. The
spread on merger completion is usually lower than when it was put on. The
realized profit is the difference between the two spreads. In this book, we
discuss how the ratio is determined based on the details of the merger agree-
ment. We will develop a model for the spread dynamics that can be used to
answer questions like, “What is the market expectation on the odds of
merger completion?” We shall also demonstrate how the model may be used
for risk management. Additionally, we will focus on trade timing and pro-
vide some quantitative tools for the process.

OUTLINE

The book provides an overview of two different versions of pairs trading in
the equity markets. The first version is based on the idea of relative valua-
tion and is called statistical arbitrage pairs trading. The second involves
pairs trading that arises in the context of mergers and is called risk arbitrage.
Even though they are commonly called arbitrage strategies in the industry,
they are by no means risk-free. In this book we take an in-depth look at the
various aspects of these strategies and provide quantitative tools to assist in
their analysis.

I must also quickly point out at this juncture that the methodologies dis-
cussed in the book are not by any measure to be construed as the only way
to trade pairs because, to put it proverbially, there is more than one way to
skin a cat. We do, however, strive to present a compelling point of view at-
tempting to integrate theory and practice. The book is by no means meant
to be a guarantee for success in pairs trading. However, it provides a frame-
work and insights on applying rigorous analysis to trading pairs in the eq-
uity markets.

The book is in three parts. In the first part, we present preliminary ma-
terial on some key topics. We concede that there are books entirely devoted
to each of the topics addressed, and the coverage of the topics here is not ex-
haustive. However, the discussion sets the context for the rest of the book
and helps familiarize the reader with some important ideas. It also intro-
duces some notation and definitions. The second part is devoted to statisti-
cal arbitrage pairs, and the third part is on risk arbitrage.

The book assumes some knowledge on the part of the reader of algebra,
probability theory, and calculus. Nevertheless, we have strived to make the
material accessible and the reader could choose to pick up the background
along the way. As a refresher, the appendix at the end of this chapter lists the
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basic probability formulas that the reader can expect to encounter in the
course of reading the book.

In terms of the sequence of chapters, we highly recommend that readers
familiarize themselves with the chapters on time series and multifactor mod-
els before getting on to statistical arbitrage pairs, as those ideas and techni-
cal terms are referenced quite frequently in the course of the discussions.
Concepts from Chapter 4, on Kalman filtering, are used in Chapter 12, re-
lated to smoothing risk arbitrage spreads. Other than the preceding de-
pendencies, the rest of the material is mostly self-contained.

AUDIENCE

This book is written to appeal to a broad audience spanning students, prac-
titioners, and self-study enthusiasts. It is written in an easy reading style, first
presenting the broad ideas and concepts and subsequently delving into the
details. The idea is to provide readers with the flexibility to revisit aspects of
the details on their own timetable. To further facilitate this, a bullet sum-
mary highlighting the key points is provided at the end of every chapter. The
book could serve as a reference text for students pursuing a degree in math-
ematical finance or be used as part of an advanced course for MBA students.
Also, the topics addressed in the book would be of keen interest not only to
academicians but also to traders and quantitative analysts in hedge funds
and brokerage houses.

The background material in Part 1 provides a primer on various subjects
that are drawn on in the course of the analysis. The background material
and the analysis methodology appear as a recurring theme in strategy analy-
sis and are generally applicable to other asset classes as well. Given this and
the easy readable style of the book, we hope that this book serves as a ref-
erence for investment professionals.

SUMMARY

m The CAPM model helps separate out portfolio returns into a market
component and a residual component.

m Portfolios with a zero market component are called market neutral
portfolios.

m Market neutral strategies involve the trading of market neutral portfo-
lios, and the returns generated by such strategies are uncorrelated with
the market.

m Pairs trading is a genre of market neutral strategies in which a portfolio
has only two assets.
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m In the book, we will discuss two classes of pairs trading strategies;
namely, risk arbitrage and statistical arbitrage.

FURTHER READING MATERIAL

CAPM

Elton, Edwin J. and Martin J. Gruber. Modern Portfolio Theory and Investment
Analysis, 4th Edition. (New York: John Wiley & Sons, Inc., 1991).

Fama, Eugene F. and Kenneth R. French. “The Cross-Section of Expected Stock Re-
turns.” Journal of Finance 47, no. 2 (June 1992): 427-465.

Market Neutral Strategies

Nicholas, Joseph G. Market Neutral Investing: Long/Short Hedge Fund Strategies.
(New York: Bloomberg Press, 2000).
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APPENDIX

Below are a few formulas on random variables that we are likely to en-
counter throughout the book.

DEFINITIONS

Let X, Y, and Z be random variables. Let (x, ¥1, 21),(X25, Y25 22)5e--5(X N> Yo
zn) be N realization 3-tuples for these random variables.

m The mean or expected value of X is denoted by E[X] = p,.
®m The estimated value of the mean of a random variable is known as the
average. N

m The formula for the average is Xovg = X,

1
N 1
i=1

Variance
m The variance of X is var(X) = E[(x - ux)Z].

m The estimated value of the square root of variance is the familiar stan-

dard deviation. N

(x, — x
i=1

>

® Its value is calculated using the formula x 44, = /%

avg

Covariance

m The covariance between X and Y is denoted as
cov(X,Y) = E[(x — i)y - uy)]-

® An estimation of the covariance may be calculated using the formula
N

1
N = (xi - xavg)(yi - yavg)'

Correlation
cov(X,Y)
var(X) var(Y)

® The formula for the estimate of correlation is given as

m The correlation between X and Yis corr(X,Y) =

Z.

1 _ —
N 4 (xi xavg)(yi yavg)

(Xstddev )(Ystddev )

Il
—_
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m The correlation between any two random variables is always a value be-
tween +1 and -1.

m Every random variable is perfectly correlated with itself, that is, the cor-
relation is 1.0.

m Two random variables are said to be uncorrelated when the correlation
between them is 0.

FORMULAS

If o, B are nonrandom numbers, then the following formulas hold:

ElaX + BY] = aE[X] + BE[Y]

var(aX + B) = o var(X)

var(X + Y) = var(X) + var(Y) + 2cov(X,Y)
var(X - Y) = var(X) + var(Y) - 2cov(X,Y)
cov(aX, BY) = affcov(X,Y)

cov(X,Y + Z) = cov(X,Y) + cov(X,Z)
corr(aX, BY) = corr(X,Y)
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Time Series

OVERVIEW

A time series is a sequence of values measured over time. These values may
be derived from a fixed deterministic formula, in which case they are re-
ferred to as a deterministic time series. Alternately, the value may be ob-
tained by drawing a sample from a probability distribution, in which case
they may be termed as probabilistic or stochastic time series. In this chapter,
we will focus on stochastic time series.

Now, if the value at each instance in a stochastic time series is drawn
from a probability distribution, how is it different from repeated drawings
from a probability distribution? The added twist is that the probability dis-
tributions used for the drawings can themselves vary with time. The formal
specification prescribing ways in which the distributions could vary with
time and the discipline of analyzing stochastic time series was pioneered
and popularized by Nobert Weiner.! For this reason, the subject area is also
referred to at times as Weiner filtering.

In the early days of Weiner filtering, the ideas were in theorem form,
and to use them in practical applications one had to work through the rig-
orous mathematical definitions and theorems. Along came George Box and
Gwilym Jenkins in the early 1970s, who formulated the application of
Weiner filtering concepts into a recipe-like format. Their step-by-step pre-
scription to the process of model building not only had great intuitive appeal
but also managed to transform what was considered an esoteric science into
a robust engineering discipline. The approach could now be readily applied
to forecasting problems. The methodology gained instant popularity with
time series analysts and has become the staple by far for the analysis of sto-

"Nobert Weiner is also credited with coining the word cybernetics, the shortened
version of which is the ubiquitous cyber, which has by usage become a prefix for a
lot of terms associated with the Internet.

14
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chastic time series. Fittingly, their methodology for time series forecasting is
referred to as the Box-Jenkins approach. In this chapter, we will describe the
Box-Jenkins approach. Instead of doing this by definition, we will attempt
to do this by way of construction and examples.

We begin by introducing some basic notation. Throughout the chapter
the value of a time series at time ¢ is denoted as y,. It then follows that the gen-
eral time series is the set of values y,, £ = 0, 1, 2, 3...T. We denote this as y,.

AUTOCORRELATION

Let us begin the discussion by introducing the notion of the autocorrelation.
Given a stochastic time series, the first question one tends to ask in the
process of analysis is, “Is there a relationship between the value now and the
value observed one time step in the past?” We can choose to answer the
question by measuring the correlation between the time series values one
time interval apart. The strength of the (linear) relationship is reflected in the
correlation number. And what about the relationship of the current value to
the value two time steps in the past? What about three time steps in the past?
The question seems to repeat itself naturally for the whole range of time
steps. The answer to these questions, spanning the entire range of time steps,
could very well be the autocorrelation function.

The autocorrelation function is the plot of the correlation between val-
ues in the time series based on the time interval between them. The x-axis de-
notes the length of the time lag between the current value and the value in
the past. The y-axis value for a time lag 7, (x = 7) is the correlation between
the values in the time series 7 time units apart. This correlation is estimated
using the formula

where y is the calculated average of variable y.

The plot of the estimated correlation against time intervals forms an es-
timation of the autocorrelation function, called the correlogram. It serves as
a proxy for the autocorrelation function of the time series.

We shall see in the ensuing discussions that the autocorrelation function
serves as a signature or fingerprint for a time series and plays a key role in
characterizing various cases of the time series that we describe in the fol-
lowing sections.
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TIME SERIES MODELS

The approach we will adopt in the description of time series models is to start
with the special cases and eventually build up to the generalized version.

White Noise

The white noise is the simplest case of a probabilistic time series. It is con-
structed by drawing a value from a normal distribution at each time in-
stance. Furthermore, the parameters of the normal distribution are fixed and
do not change with time. Thus, in this case, the time series is equivalent to
drawing samples repeatedly from a probability distribution. If we denote the
value from the drawing at time ¢ as €, the value of the time series at time ¢
is then y, = ,.

Note that there is no special requirement in the definition of white noise
that the invariant distribution be a normal or Gaussian distribution. This is,
however, the most widely used version of white noise in practice and is re-
ferred to as Gaussian white noise.

A plot of a white noise series is shown in Figure 2.1a. The correlogram
for that time series is calculated as is shown in Figure 2.1b. Note that at the
lag value of zero, the correlation is unity; that is, every sample is perfectly
correlated with itself. At all the other lag values the measured correlation is
negligible. Let us see why that is. At all time steps, the values are drawn from
identical independent normal distributions. It is also a fact that the correla-
tion between independent random variables is zero; that is, they are uncor-
related. Therefore, for a white noise series, the correlation between the
values for all time intervals is zero, and this is reflected in the correlogram.
But what is the genesis of the term white noise? It has to do with the Fourier
transform of the autocorrelation function. A discussion of that is a little be-
yond the scope of this introduction, so for that we direct the reader to other
books written in the area, as noted in the reference section.

Let us now focus on the predictability of the white noise time series. The
question we ask is as follows: Does knowledge of the past realization help in
the prediction of the time series value in the next time instant? It does help
to some extent. Knowledge of the past realization helps us to estimate the
variance of the normal distribution. This enables us to arrive at some intel-
ligent conclusions about the odds of the next realization of the time series
being greater than or less than some value.

Summing up, in a white noise series, the variance of the value at each
point in the series is the variance of the normal distribution used for draw-
ing the white noise values. This distribution with a specific mean and vari-
ance is time invariant. Thus, a white noise series is a sequence of uncorrelated
random variables with constant mean and variance.
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Moving Average Process (MA)

We now generate another time series from the white noise series above. The

value v,

of this time series at time ¢ is given by the rule

Y =& + Pe (2.2)

In words, the time series value is the sum of the current white noise realiza-

tion plu

s beta? times the white noise realization one time step ago. Note that

2Beta in this connotation is a nondescript Greek symbol denoting a constant and has
no relationship to the CAPM model.
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when 8 = 0, this is the same as the white noise series. In Figure 2.2a is a plot
of a time series of this type. This specific time series was generated from the
white noise sequence in Figure 2.1 using the formula y, = €, + 0.8¢,_;. The cor-
relogram of the series is plotted in Figure 2.2b. In the correlogram, note that
there is a steep drop in the value after 7 = 1. To see why that is, let us con-
sider the time series values for the three consecutive time steps ¢, # + 1, and
t+ 2.

Vi =& + Bey (2.3)
Ves1 = €1 + BE;
yt+2 = £t+2 + ﬁ8t+1

FIGURE 2.2R MA(1) Series.
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Observe that the values one time interval apart (7 = 1) have in their terms
one common white noise realization value (albeit with different coefficients).
Between y, and y,,; the common white noise realization is g, Similarly, be-
tween y,,; and vy,,, there is g,,;. Because of this, we expect there to be some
correlation between them.

However, between y, and y,,,, values two time intervals apart (7 =2), we
have no common white noise realizations. They are independent drawings
from normal distributions and are therefore uncorrelated (correlation = 0).
Thus, after exhibiting strong correlation after one time step, the correlation
goes to zero from the next time step onward. This would explain the steep
drop in correlation after 7 = 1.

To examine the predictability of this time series, we again ask the same
question: Does knowledge of the past realization help in the prediction of
the next time series value? The answer here is a resounding yes. At time step
t we know what the white noise realization was at time step ¢ — 1. Thus our
prediction for time step ¢ would be a value that is normally distributed with
the mean, y?™! = Be, . The variance of the predicted value would be the
variance of the g, which is same as the variance of the white noise used to
construct the time series. Since these values are based on the condition that
we know the past realization of the time series, they are called the condi-
tional mean and the conditional variance of the time series. To conclude,
knowledge of the past definitely helps in the prediction of time series.

Summing up, the preceding series was constructed using a linear com-
bination (moving average) of white noise realizations. The series is therefore
called a moving average (MA) series. Also, because we used the current
value and one lagged value of the white noise series, the series qualifies as a
first-order moving average process, denoted as MA(1). This idea is easily
generalized to a series where the value is constructed using g lagged values
of white noise realizations.

Vi =&+ P&y + Bogiy +"'+ﬂqet—q (2.4)

Such a series is called the moving average series of order g or an MA(q)
series.

Autoregressive Process (AR)

In the previous example we had constructed a time series by taking a linear
combination of a finite number of past white noise realizations. In this sec-
tion we will construct the series using a linear combination of infinite past
values of the white noise realization. In practice, though, infinity is approx-
imated by taking a very large number of values. A question that immediately
pops to mind is that if we add an infinite sequence of numbers, will the
sum not go to infinity? In some instances it might go to infinity. There are,
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however, cases where the sum of an infinite sequence of numbers is actually
a finite value.? Let us denote the value of the time series at instant  as

Y, = & + OE4 + OPE, +... (2.5)

The infinite moving average representation above is called the MA(e) rep-
resentation. To simplify Equation 2.5, consider the value of the time series
at ¢t — 1. It is given as

1 =€ + OEy + OPE 3 +... 2.6
=1 1 =2 -3

Examining the two equations, note that we can write y, in terms of y,_; as
follows:

Ve=O0Y 1 + & (2.7)

In words, the value at time ¢ is alpha times the value at time 7 — 1 plus a white
noise term. Note that alpha may be viewed as the slope of the regression be-
tween two consecutive values of the time series. Since the next value in the
time series is obtained by multiplying the past value with the slope of the
regression, it is called an autoregressive (AR) series. Figure 2.3a is the plot of
the AR time series, generated using the white noise values seen in Figure 2.1.

The corresponding correlogram is shown in Figure 2.3b. Notice that the
correlation values fall off gradually with increasing lag values; that is, there
is not much of a sharp drop. To get an insight into why that is, let us apply
the same kind of reasoning as we did for the MA model. Every time step has
in it additive terms comprising all the previous white noise realizations.
Therefore, there will always be white noise realizations that are common be-
tween two values of the time series however far apart they may be. Natu-
rally, we can expect there to be some correlation between any two values in
the time series regardless of the time interval between them. It is therefore
not surprising that the correlation exhibits a slow decay.

To answer the predictability question, here, too, as in the moving aver-
age case, knowledge of the past values of the time series is helpful in pre-
dicting what the next value is likely to be. In this case we have yP™ = ay, ,.
The conditional variance of the predicted value would be the variance of the
€,, which is same as the variance of the white noise used to construct the time
series.

The one-step autoregressive series may be extended to an autoregressive
(AR) series of order p, denoted as AR(p). The value at time # is given as

3We touch upon this topic very briefly in the appendix. However, for a full-blown
discussion on stability analysis, we recommend that the reader follow up with the
references.
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Ve =&+ 01Yq + 0V +eoot OYry (2.8)

It is, however, important to bear in mind that the generalized AR series
is generated from a white noise series using linear combinations of past
realizations.

The General ARMA Process

The AR(p) and MA(q) models can be mixed to form an ARMA(p, g) model.
By extrapolation it is easy to see that the generation rule for an ARMA (p, q)
process 1s given as
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v, =y + oy, ey, ] (2.9)
+ [et +BiE,_ +BrE, ..+ quhq]

We once again underscore the main point (hoping to drive it home) by quot-
ing our constant refrain pertaining to Weiner filtering: The preceding mod-
els are all constructed using a linear combination of past values of the white
noise series. An important consequence of that fact is that the sum of two in-
dependent ARMA series is also ARMA.

The Random Walk Process

An important and special ARMA series that merits discussion is the random
walk. The random walk has been studied extensively by scientists from var-
ious disciplines. Phenomena ranging from the movement of molecules to
fluctuations of stock prices have been modeled as random walks. Let us
therefore discuss this in some detail.

A random walk is an AR(1) series with o = 1. From the definition of an
AR series given, the value of the time series at time ¢ is therefore

Vi=E+E+EL e ZE+ Yy (2.10)

In words, the random walk is essentially a simple sum of all the white noise
realizations up to the current time. The AR representation provides an al-
ternate way to look at the random walk. It is the value of the time series one
time step ago plus the white noise realization at the current time step. The
white noise realization at the current time step in the case of the random
walk is known as the innovation. Figure 2.4 is a picture of the random walk
generated using the white noise series in Figure 2.1.

Let us now begin to examine some properties of the random walk. What
do we expect the variance of the random walk to be at time #? Applying the
formulas from the appendix in Chapter 1 on the MA(e) (infinity) represen-
tation of the random walk, along with the fact that white noise drawings are
uncorrelated, we have

var(y,) = var(e,) + var(e,_, ) + var(e,_, ) + - + var(g,)  (2.11)

Since these random white noise drawings all have the same variance, the
variance of the random walk at any time ¢ is clearly

Var(yt) =t Var(st) (2.12)

Note that in this case the variance depends on the time instant, and it in-
creases linearly with time #. (If the variance increases linearly with #, then the
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standard deviation increases linearly with «ﬁ ). In this case, unlike all the
previous cases, the variance increases monotonically with time; that is, the
values are capable of moving to extremes with the passage of time. Also, the
statistical parameters like the unconditional mean and variance are not time
invariant, or stationary. The series is therefore called a nonstationary time
series.

The correlation between a value and its immediate lagging value is 1.
Our prediction for the next time step would then be a value with mean
equal to the current time step; that is, yfmd = v, ;. The variance, of course,
is the variance of the white noise realizations. As a matter of fact, our pre-
diction for any number of time steps would be a distribution whose mean is
the current value of the series. However, because the variance increases lin-
early with time, the error in our prediction progressively increases with the
number of time steps.

Of the different time series reviewed so far, the random walk is the only
series in which the prediction of the mean value for the next time step is the
current value. Such series where the expected value at the next time step is
the value at the current time step are known as martingales. The random
walk qualifies as a martingale.

The random walk also exhibits a strong trending behavior. Let us ex-
amine that statement by contrasting the behavior of the random walk with
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other time series. The other time series tend to oscillate about the mean of
the series; that is, they exhibit mean reversion. To see what we mean, we
suggest that the reader examine the time series plots and see how many
times the different time series cross the mean (zero in this case). It is easy
to see that the random walk has the least number of zero crossings. Even
though the increments to the series at each time instance have equal odds of
being positive or negative, it is not uncommon for the random walk series to
stay positive (or negative) during the entire time.

FORECASTING

Having discussed the stochastic time series models, let us now direct our at-
tention to the problem of forecasting. The classical forecasting problem may
be stated as follows: We are given historical time series data with values up
to the current time. We are required to predict the value of the next time step
value as closely as possible. In the stochastic time series context, this means
that we first identify the ARMA model that is most likely to have resulted in
the data set and then use the estimated parameters of the model to forecast
the next value of the time series.

Let us now formally lay down the steps involved in forecasting prob-
lems involving stochastic time series. The solution method is best described
as a three-step process. The first step involves transforming the time series
such that it is amenable to analysis. We call this the preprocessing step. The
data are then analyzed for patterns that may clue us in on the dynamics of
the time series. This means that we identify the ARMA model that is likely
to have resulted in the data. This is the analysis step. Finally, we make our
prediction in the prediction step. We now discuss each of the three steps in
detail.

Preprocessing involves dealing with pesky issues like checking for miss-
ing values, weeding out bad data, eliminating outliers, and so forth. It may
also involve transforming the time series to prepare it for analysis. A simple
transformation may be to subtract the mean of the series. Other methods
may involve creating a new time series by a functional transformation. The
application of the logarithmic function to values of the given series prior to
analysis is a good example. In the context of ARMA models, an important
transformation technique that is frequently used is known as differencing. It
is a process by which a new series is constructed by taking the difference be-
tween two consecutive values in the given series. Let us discuss the motiva-
tion for doing that. The ARMA model based forecasting is typically focused
on the stationary time series. If we are given a series that is deemed nonsta-
tionary, differencing helps transform the nonstationary series into a station-
ary series. The output from the differencing operation may be viewed as the
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series of increments to the current value. Thus, analyzing the differenced
output amounts to studying the changes in the values as opposed to the val-
ues themselves.

The next step is the analysis step. It involves identifying the ARMA
model used to generate the given time series data. An ARMA model is com-
pletely identified when we are given the white noise series and the rule to
generate the time series from the white noise realizations. Sometimes, the
white noise series is implicit. The estimated ARMA parameters are, how-
ever, stated explicitly. But why should we try to fit an ARMA model to a
given data set? The answer is simply that ARMA models provide an empir-
ical explanation for the data without concerning themselves with theoretical
justifications. This makes them readily applicable to a variety of situations.
Also, the fact that ARMA models are empirical is not necessarily a bad
thing, as insights from the model fitting exercise can be later used to con-
struct a plausible theory.

Once the underlying ARMA model is identified, we can proceed to the
prediction step. We use the model parameters to predict the next value in the
series. This completes the forecasting exercise. As seen earlier in our discus-
sion of the ARMA model, the prediction of the next time step value is rather
straightforward once the model is identified. Therefore, insofar as forecast-
ing is concerned, identifying the correct model is key to obtaining a good
forecast. Not surprisingly, a good portion of the field of time series analysis
is focused on model identification.

GOODNESS OF FIT VERSUS BIAS

We noted that identifying the right model is key to obtaining a good fore-
cast. There are quite a few software packages* that estimate parameter val-
ues for ARMA models. While they are based on a variety of approaches, the
basic underlying theme in all of them remains the same; that is, the goal to
find the most appropriate ARMA model. Note the use of the term most ap-
propriate. Let us focus on what it actually means.

Intuitively, a model may be deemed appropriate based on the accuracy
with which it is able to account for the given data set. Let us call the num-
ber that quantifies this accuracy the “goodness of fit” measure. An example
of the goodness of fit measure is the least squares criterion, which is simply
the sum of squares of the prediction error. Prediction error is defined as
the difference between the actual observation and the value predicted by the
model. The idea then is to find a model that minimizes the least squares

4Eviews, S-Plus, and SAS are some software packages that deal with time series mod-
eling and forecasting.
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criterion (sum of squared errors) for the given data. Another example of the
goodness of fit measure is the maximum likelihood criterion. This is a num-
ber representative of the probability that the given data set was produced
by a particular set of parameter values. The idea here is to find the parame-
ters that maximize the probability, or the maximum likelihood criterion.
Thus, the goodness of fit measure helps identify the best model for the given
data set.

Of course, the preceding statement is not without caveats. Let us say
that we are required to choose the best four-parameter model fitting the
data. The goodness of fit criterion would do a wonderful job in helping us
achieve that. It is, however, very likely that the best five-parameter model
would have a better goodness of fit score. As a matter of fact, we can in all
likelihood keep improving our goodness of fit score by increasing the num-
ber of explanatory variables. Therefore, using the goodness of fit score with-
out reservation amounts to advocating the philosophy of the more the
merrier for explanatory variables.

Is that necessarily a good thing? What happens when we apply the
model to out-of-sample data? Will we get the same level of accuracy? To see
the logic more clearly, let us discuss an extreme case where we fit 100 data
points with a 100th-order polynomial (100 explanatory variables). With
that, we can get an exact fit to the data and the best possible goodness of fit
score ever. However, as a working model for prediction, it is probably not
much use to us. Increasing the parameters indefinitely may result in a model
that fits the current data set but performs poorly when used outside the cur-
rent sample. Restating, we could say that our model with a large number of
explanatory variables is hopelessly biased to the current data set. So, here is
our dilemma: We can improve the goodness of fit by increasing the number
of explanatory variables and run the risk of bias, or we can use few ex-
planatory variables and possibly miss further reduction in forecast error.
The question at this point is, “How do I know the point at which I have a
reasonable goodness of fit, and at the same time know that T am not overly
biased to the current data set?” The resolution of this forms the topic of dis-
cussion in the following section.

MODEL CHOICE

The model choice process attempts to achieve a trade-off between goodness
of fit and bias. In order to decide whether to increase the number of ex-
planatory variables, we pose the question, “Am I getting sufficient bang for
the buck in terms of fit error reduction for the addition of the new explana-
tory variable?” If I am, then let us go with the additional variable; otherwise,
we stick with the model at hand.
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The Akaike information criterion (AIC) quantifies the preceding trade-
off argument.’ In general, every model with k parameters is associated with
an AIC number as follows:

no 2
AIC = n log(z e_,.] + 2k (2.13)
n

i=1

where ¢; is the forecast error on the ith data point. Here, the first term rep-
resents the goodness of fit, and the second term is the bias. For every addi-
tional variable, the second term increases by a value of 2. However, when a
variable is added, we expect the fit to improve and the variance of the fore-
cast error to go down. If this reduction is more than 2, then the AIC value
for the model with an additional variable will be lower, and we will have got
our proverbial bang for the buck. If the value is higher, then the trade-off is
not worth it, and we stick with the current model.

The rationale for the AIC formula and the quantitative value used for
trade-off has a strong foundation in information theory and is far from
arbitrary. Further follow-up material on this can be found in the reference
section.

Example

The application of the AIC idea is illustrated in the following exercise. An
AR(3) time series that was generated is shown in Figure 2.5a. AR models of
various orders were fit to it and the AIC values calculated. The result is plot-
ted in Figure 2.5b. The x-axis denotes the number of parameters in the AR
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FIGURE 2.5A AR(3) Series.

SAIC is but one of many cost functions. The Schwartz information criterion (SIC)
and the Bayesian information criterion (BIC) are also popular.
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BeFORE AIC: THE STATISTICIAN'S TORTURE

RAINING ON THE PARADE

If you ever happen to make a presentation involving data analysis,
here is a situation that you might encounter. After all the preparation
involving umpteen coffees, and bleary-eyed but vigorous mouse click-
ing at statistical packages as you present your forecasting model, there
is a wise guy in the audience who quips, “I am sure I can fit any model
to the degree of accuracy I want by adding a lot of variables. I do not
see how your model is any good.” While you would like to stare him
down until he sulks and quietly leaves the room, more often than not
the wise guy happens to be the boss. Unfortunately for you, more often
than not he is also correct.

The key, however, is to be one up on the wise guy! Based on the
preceding discussion you can now wax eloquently about the tug of war
between goodness of fit and the evil of bias and how you have metic-
ulously taken into account the effect of adding multiple variables in the
forecasting model. Dazzle everyone with your slides on AIC calcula-
tions and top it off with an out-of-sample test.

If your presentation is close to end of fiscal year, you can chuckle
to yourself about the bump in bonus you are likely to see due to this.
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AFTER AIC: THE STATISTICIANS CoMPROMISE
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FIGURE 2.5B AIC Plot.

model and the y-axis is the AIC value. Note that the AIC value registers a
minimum at four parameters. This is three AR parameters and a constant
value for the mean of the series. Using more parameters will result in a bet-
ter goodness of fit but will not help in forecasting. In some instances, it might
actually hurt the forecasting results.
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MODELING STOCK PRICES

The model that is most commonly assumed for stock price movement is
called a log-normal process; that is, the logarithm of the stock price is as-
sumed to exhibit a random walk. Let us discuss the implications of such an
assumption.

First, this says that the logarithm of the stock price is a martingale. This
is to say that the observed price of a stock at the next time period is roughly
equal to the price at the current time, give or take a few. That is definitely
reasonable.

Next, let us examine the resulting time series when we difference the
random walk. Differencing the random walk yields the increment to the ran-
dom walk at each time step. The set of increments by definition are drawings
from a normal distribution. But this is exactly how white noise is defined.
Thus, differencing a random walk results in a white noise series. Also, bear
in mind that the differencing output of the log-normal process (the difference
in the logarithm of the prices) can be interpreted as the stock return.® Putting
the two together, the implication of the log-normal assumption is that stock
returns are essentially a white noise process. Let us look at the plausibility of
this implication. Figure 2.6a is a plot of the logarithm of the price of GE
(General Electric) over a 100-day period. The series is then differenced,
yielding the differenced plot in Figure 2.6b. To quickly check the nature of
differenced values (returns), we urge the reader to examine Figure 2.6d. It is
a O-O plot of the returns versus the normal distribution. The closer the
points are to the straight line, the more the actual distribution behaves like
a normal distribution. The autocorrelation plot of the returns is depicted in
Figure 2.6¢. Note that the correlation values are negligible, signifying that an
assumption of white noise for the differenced series in a random walk is def-
initely plausible.

Now, let us discuss the issues surrounding predictability in a random
walk. We know that for a random walk the predicted value at the next time
step is the value at the current time step. That is all fine, but the purpose of
prediction is to make profits, and profits are made by correctly predicting
the increment to the random walk in the next time period. However, because
the random walk is a martingale, the mean value of the predicted increment
is zero. The actual realized value of the increment is anybody’s guess. Does
the situation improve when we try to predict values two time steps ahead?
Not very much really. The mean value of the predicted increment is still

12

%. Hence the difference in the logarithm may be construed
1

6 log(pz) - IOg(Pl) =

to be the return.
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zero. If anything, the variance of the normal distribution two time steps
away increases, and the plausible range of values that the increment can as-
sume actually increases, further increasing our prediction error. Therefore,
knowing the past history of a random walk is not much help in predicting
the forward-looking increments.

The situation is very different for stationary processes. Armed with the
knowledge that stationary processes are mean reverting, one can predict the
increment to be greater than or equal to the difference between the current
value and the mean. The prediction is guaranteed to hold true at some point
in the future realizations of the time series.

However, stock prices are modeled as a log-normal process, and that is
definitely not stationary. So, where does that leave us in terms of making
profits? Definitely not anywhere close to making money. The reader is prob-
ably wondering what the point of this whole chapter is. If the logarithm of
stock prices is assumed to be random walk, there is no need to go atitin a
roundabout way. Just say it is futile trying to predict stock returns and leave
it at that. But all hope is not lost. We shall see in the later chapters that it
may be possible to construct portfolios whose time series are actually sta-
tionary, and the returns for those portfolios are indeed predictable. Let us
stop here with this teaser.

SUMMARY

m A time series is constructed by periodically drawing samples from prob-
ability distributions that vary with time.

m The white noise process is the most elementary form of time series and
is generated by drawing samples from a fixed distribution at every time
instance.

m ARMA time series are generated using fixed linear combinations of
white noise realizations.

m Time series forecasting for ARMA processes involves deciphering the
linear combination and the white noise sequence used to generate the
given data and using it to predict the future values.

® A random walk process is the time series where the current value is a
simple sum of all the white noise realizations up to the present time.

m A random walk is a nonstationary time series.

m Nonstationary time series are usually transformed to stationary time se-
ries using differencing.

m The logarithm of the stock price series is usually modeled as a random
walk.
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APPENDIX

Lag 1 Correlation in a MA(1) Series

The variance of y, can be calculated using the preceding formulas as

Var(yt) = Var(et + ﬁet_l) = var(et) + B var(et_]) + 2B cov(et,SH) =

= (1+ ) var(z,
core(yy3,4) = Eyyed BE(e2,) i
varly, Jvar(y) - Jvar(y,)var(y,.,)
_Bvale) B

var(yt) B 1+ B?

Therefore, unlike the white noise series, this series has a nontrivial correla-
tion structure.

Lag 1 Correlation in a AR(1) Series
The variance at each time instant is given as
var(yt) = E(yf) = (1 +of +at+af + ) var(et)

If o > 1, the series explodes and the variance becomes infinity. However,
when o > 1, the variance can be calculated as the sum of an infinite geo-
metric series and written as

The covariance is given as

COV(ytSyt—l) = E[ytyt,l] = E[(OcyH + et)yH] = ocvar(yt)
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The correlation is therefore

~ cOV()’ta yt—l) _ avar(yt) =
Corr(y,, yt—l) = Var(y,) - Vaf(%) =

Conditions under Which the Maximum Likelihood
Is Equivalent to Minimizing Sum of Squares

The substitution of the logarithm of the likelihood criterion with the sum of
the squared errors hinges on a key assumption. The assumption is that the
errors follow a normal distribution with a zero mean. Based on this as-
sumption, every error value may be assigned a probability of occurrence.

P(e,-) _ 1 (et. /G)2

J?”CXP - 2

We now make another assumption that the errors are independent of each
other. Then the probability (likelihood) of obtaining the following error se-
quence is the product of these probabilities.

plerror) = T fe)

i=1

Now, taking the logarithm of the above equation on both sides we have an
expression for logarithm of the likelihood.

N

log(likelihood) = i log[p(el.)] = % log(Zn) - 2% Y e?
i=1 o

i=1

Let us examine our motivation for doing that. If we arrange a sequence of
numbers in ascending or descending order and take their logarithms in se-
quence, the logarithms are guaranteed to be in ascending or descending
order, as the case may be. We might say that transforming a set of numbers
into their logarithms preserves their ranks. Therefore, maximizing the log-
likelihood is equivalent to maximizing the likelihood. We shall see in the fol-
lowing discussion that the log-likelihood can be simpler to deal with.
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Examining the expression for logarithm of the likelihood, we see that
N

the only variable term is —2 e’ . Note that this is the sum of squared errors

multiplied by the negative éigln. Thus, maximizing the logarithm of the like-
lihood is the same as minimizing the sum of squared errors. Therefore, in sit-
uations where we make the assumptions as discussed, then the sum of
squares multiplied by a negative sign may be used as a proxy for the max-
imum likelihood.
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INTRODUCTION

Factor models are models that are used to explain the risk/return character-
istics of assets. It is actually a rather loose term that serves to describe a wide
variety of models. However, all the models share the common characteristic
that they may be viewed as extensions to the CAPM model. The premise of
the CAPM model is that the returns of assets are explicable almost com-
pletely by the behavior of the overall market. Each asset is sensitive to the
market in its own characteristic way, and this sensitivity is termed beta.

37
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Thus in the CAPM model there is a single explanatory factor and exposure
value; namely, the market return and beta. A natural extension to this idea
would then be to have multiple explanatory factors and exposure/sensitivity
values. For instance, it is possible to construe that the return on a stock de-
pends on the sector of the economy in which it operates, the market capi-
talization, and a good number of other explanatory factors that can be
drawn from the available repertoire of market variables. In this context of
multiple explanatory factors, the return of a stock would then be an aggre-
gate of the return contributions of the factors scaled according to the sensi-
tivity/factor exposure. Thus, the return of a stock in a factor model is
explained by the return contributions of the various factors.

Depending on the type of the factors used, factor models may be loosely
categorized into three main groups: statistical factor models, macro-
economic factor models, and fundamental factor models. The factors in a
statistical factor model are what we shall call eigen portfolios. They are a
set of building-block portfolios with the property that their returns are un-
correlated with each other. Also, the return on any portfolio can be ex-
pressed as a linear combination of the returns on the eigen portfolios.
However, the eigen portfolios are actually statistical artifacts deduced from
data, and interpreting the results is a task that is easier said than done. So,
when looking to answer questions from a valuation or a risk control stand-
point, one would have to examine the returns closely to answer the ques-
tion: What is the predominant theme or themes that characterize the eigen
portfolio? It is this problem of interpretation that makes the statistical fac-
tor models more of a black box and hard to use. Not surprisingly, the pref-
erence for practitioners has been models that allow them to specify the
factors (macroeconomic or fundamental) allowing for a more intuitive ex-
planation for the factor returns. These models are different from the statis-
tical factor model in that the role of the eigen portfolios is actually assumed
by some macroeconomic or fundamental variable that can be observed
directly.

The macroeconomic factor models are constructed using historical stock
returns and observable macroeconomic variables. An example of propri-
etary macroeconomic factor models is the Burmeister, Ibbotson, Roll, and
Ross (BIRR) model. The factors or attributes in such models typically in-
clude short-term bond yield changes, long-term bond yield changes, dollar
value versus other currencies, investor confidence, and changes in long-run
economic growth. In contrast to the macroeconomic model, the fundamen-
tal factor model uses company and industry attributes and market data as
raw descriptors to explain the returns. Examples of commercially available
models of this type are the BARRA and Wilshire Atlas models. The inputs
to these models are typically industry factors comprising the industries in
which the firms operate, and other fundamental factors like price/earnings
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ratio, the price/book ratio, attributes relating to the capital structure of the
firm like debt/equity ratios, and the like.

Even though there exists a wide variety of models, it may not be neces-
sary to discuss each of the models on an individual basis. The theoretical un-
derpinning for the models is provided by arbitrage pricing theory (APT).
Thus, by treating the factors used as inputs in an abstract way and dis-
cussing arbitrage pricing theory, we can cover a lot of ground on the behav-
ior and use of these different models.

ARBITRAGE PRICING THEORY

Arbitrage pricing theory was originally proposed by Stephen A. Ross in 1976.
Unlike the preceding introduction, in which APT was presented as an exten-
sion of CAPM, the original proposal by Ross is actually embedded in an ar-
bitrage argument and is appropriately reflected in the name of the theory.
In this chapter, however, we will avoid an elaborate discussion on the foun-
dations of APT. For that, we direct the reader to the material listed in the ref-
erences. Instead, we will provide simple definitions and focus on a few
applications to familiarize the reader with the concepts and their application.

In the multifactor framework, an asset is fully characterized by its fac-
tor exposure/sensitivity profile. The contribution to the overall asset return
due to each factor is commensurate with the exposure/sensitivity of the asset
to the different factors. The total return is the aggregate of the contributions.
Therefore, if APT was to be summed up in one sentence, it would probably
be something like this: “Give me the risk factor profile of a security, and I
will tell you all about its risk and return characteristics.” Let us now describe
some terminology and notation surrounding APT.

We will first start with risk factor exposures. Keeping with the idea of
APT being an extension of the CAPM model, let us denote the factor expo-
sures as (B, B,, B3+ ﬁk) If (rl,rz,r3,..., rk) denote the return contribu-
tions of each factor, then the return on the stock is given as

r =By + Bary + Bars +eet Brrp + 7, (3.1)

where 7, is the idiosyncratic return or specific return on the stock that is not
explicable by the factors in the model. One of the key assumptions of APT
is that the specific return for a given stock is uncorrelated with both the fac-
tor returns and the specific returns of any other stock.

Let us now focus on the evaluation of risk. The risk in a stock is meas-
ured as the variance of the return. The variance of return may in some ways
be likened to the range of possible values that the return can assume. A small
variance is indicative of a narrow range and therefore lower risk, whereas a
large variance or wide range is indicative of higher uncertainty in the returns
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and therefore greater risk. This approach to measuring risk as the second
moment of the return distributions was originally proposed by Markowitz,
in the context of portfolio optimization. The Markowitz approach to port-
folio design is also sometimes referred to as mean-variance optimization
and was awarded the Nobel Prize in economics. Today it has become com-
mon practice to use the variance of the return as a measure of risk. We will
also keep with this practice and illustrate how risk/variance of return is cal-
culated in the APT framework. We do this by way of an example. Let us
consider an APT model with two factors.
The returns on the stock in the two factor model case is given as

r= ﬁlrl + ﬁz?‘z +7, (3.2)

The risk is then measured as the variance of this return. To evaluate it, let us
first expand the squared return of the stock using the algebraic identity

(a+b+c) =a® +b> +2ab + 2ac + 2bc + ¢ (3.3)

We then have
2
r? = 121'12 + 22722 + 2B,B,nry + 2By, + 2B, 151, + 1) (3.4)

Applying expectations on both sides and using the formulas in the appendix
in the first chapter, we have

Var(r) =B Var(rl) +B; Var(rz) + 28,8, cov(rl, rz) + var(re) (3.5)

Note that since 7, is uncorrelated with both 7, and r,, the terms with their
products do not feature on the value for the variance. Also, Equation 3.5 can
be written in matrix form as follows:

Var(rl) cov(r1 , rz) B,

cov(r1 , rz) Var(rz) B,

Var(r) = [ﬁ1 /32] + Var(re) (3.6)

Notice the structure of the equation. We have the factor exposure pro-
file and its transpose on either side of a square matrix. This square matrix is
structured such that it has the variance of the factor returns on its diagonal
and the covariance as the off-diagonal elements. It is also commonly referred
to as the covariance matrix of factor returns and plays a central role in the
calculation of the risk of the security. We can simplify the notation for risk
even further:
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var(r) = eVe® + var(r,) (3.7)

where V is the covariance matrix and e is the factor exposure vector. Also
note from Equation 3.7 that the variance of the return is expressed as a sim-
ple sum of two terms. The first term is the variance due to the common fac-
tors, and the second term is the idiosyncratic/specific variance. Also, given
that the standard deviation is the square root of variance, Equation 3.7 may
also be written as

O-rzet = O-czf + O-szpeciﬁc (38)
One can easily remember the formula by drawing parallels between this and
the Pythagorean theorem from high school geometry. The standard devia-
tions may be represented as the sides of a right-angled triangle as shown in
Figure 3.1. In practice, it turns out that the specific variance is the smaller
component of the total variance, and a significant portion of the total vari-
ance is explained by the common factor variance. Note that key to the eval-
uation of the common factor variance is the knowledge of the covariance
matrix of factor returns.

So, how is the covariance matrix calculated in practice? If we have a
sample of past historic factor returns, then it is a simple matter of using the
formulas in the appendix of the first chapter to evaluate each of the entries
of the covariance matrix. The question therefore now becomes, how do we
get a sample of past historic factor returns? To do this, we first write out
the linear equations for the return of each stock with known stock returns,
treating the factor returns as unknown variables. Next, we solve this system
of equations to obtain an estimate of the factor and specific returns. We
now have the past factor returns that may be used to estimate the covariance
matrix.

In other words, the covariance matrix can be deduced from the factor
returns. The converse of this statement is also true. Knowledge of the

Ototal

O-spewﬁc

O common factor

FIGURE 3.1 The Risk Diagram.
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covariance matrix with the factor exposures and specific variances is suffi-
cient for us to deduce the vector of expected factor returns. The reader is re-
ferred to the book by Grinold and Kahn on how that is done. Consequently,
knowledge of the factor covariance matrix and the specific variances is suf-
ficient in order to specify an APT model completely. With that said, let us
formally list the parameters that are typically provided in the specification of
a factor model. They are as follows:

m Factor Exposure Matrix. This is the matrix of exposure/sensitivity fac-
tors. If there are N stocks in our universe and k factors in the model, we
can construct a N X k matrix with the exposures for each stock in a row.
Let us denote this matrix as X.

m Factor Covariance Matrix. This is denoted as V.

m Specific Variance Matrix. This is the specific variance for each of the N
stocks assembled in an N x N matrix with the specific variances on the
diagonal. Because the specific variances are assumed to be uncorrelated,
the nondiagonal elements are zero. This matrix is denoted as A.

Of the three parameters, the factor covariance matrix is by far the most in-

teresting. We will therefore discuss some of the properties of the covariance
matrix in its own section.

THE COVARIANCE MATRIX

The factor covariance matrix plays a key role in the determination of the
risk. It is in fact a square matrix. In a model with k factors, the dimensions
of the covariance matrix is k& x k. The diagonal elements form the variance
of the individual factors, and the nondiagonal elements are the covariances
and may have nonzero values. A nonzero covariance implies that the returns
of two explanatory factors share some correlation. For example, consider
the situation where market capitalization and the leverage of the firm are
used as explanatory variables. It is not uncommon within an industry to find
that the small cap names have a high amount of leverage. If we assume that
the small cap names outperformed the overall market, then we can expect to
see a nonzero correlation between the returns attributed to the leverage and
capitalization factors. Hence, it is possible to have nonzero entries in the off-
diagonal elements of the covariance matrix.

The covariance matrix is also symmetric. This is self-evident because
the (i,7)th element and the (j,i)th element contain the entry for the covari-
ance between the ith factor and the jth factor and are therefore the same.
Additionally, the covariance matrix is also positive definite. This means
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that the matrix has a square root; that is, V = B? for some B, where V, B are
matrices.

Consider the situation where we are required to evaluate the covariance
between the returns of securities A and B. Let e, and ey be the factor expo-
sure vectors for the two stocks. Adapting the formula for variance previously
discussed, we have the covariance as

cov(ry,ry) = eAVeg (3.9)

We can therefore calculate the covariance between all the securities in our
universe and make them entries in a covariance matrix. This matrix would
come in handy to evaluate correlations between securities. Note that if the
total universe of securities is about 5000 stocks, then the covariance matrix
for the list is a square matrix with 25 million entries. Calculating the vari-
ance and covariance of each stock pair individually by sampling past data
can be a tedious endeavor. Armed with the factor exposure vectors and the
factor covariance matrix, the covariance and correlations between securities
may be calculated readily. Thus, the use of the factor covariance matrix re-
duces the complexity of evaluating the correlations between securities in a
dramatic way. Even so, the full and complete covariance matrix for all the
stocks in the universe is given by

CovMatrix = XVXT (3.10)

It is also prudent to be aware of certain potential issues when working with
the factor covariance matrix. For example, it is not uncommon in invest-
ment circles to hear someone say, “But you don’t want to be mining the co-
variance matrix!” Let us examine what they mean by that. Mining here
refers to data mining, albeit with a negative connotation. The word is used
synonymously with bias, indicating that since the covariance matrix is de-
duced from historical data, the values are a reflection of the past and may
not hold going forward. While the empirical observation has been that the
covariance matrices are relatively stable, it is still subject to the fact that the
values used in the covariance matrix may not be exact, and it may be useful
to do some sensitivity analysis on applications where we use the covariance
matrix. It is probably worthwhile to also bear in mind that along with the
covariance matrix, the specific variance is also backward looking and is
subject to the “mining syndrome.”

Another issue that is commonly cited with regard to the covariance ma-
trix and its use is the underlying assumption of the Gaussian distribution for
the computed variance. The so-called fat tails that are ubiquitous in the vari-
ance of returns in financial time series are not accounted for by the model.
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Nevertheless, in the absence of any information whatsoever, the covari-
ance matrix serves as a critical piece of information to assess correlations be-
tween securities and for use in factor models. Careful use of the covariance
matrix can help keep the reconciliation process between the risk and return
of a large universe of securities tractable.

Example

Factor exposure for stock A in two-factor model = (0.5, 0.75)
The specific variance on stock A =.0123

The factor covariance matrix for the two-factor model is =

0625 .0225
.0225 .1024

The variance of return for the stock

A:[o.s 0.75] 062502251 0.5 5155
0225 .1024(0.75
=.0901 +.0123
=.1024

The square root of the variance is the standard deviation = .32, or 32%.
Thus, stock A has a volatility value of 32%.

Factor exposures for stock B in the two-factor model = (0.75, 0.5)

Covariance between stocks

Aand B = [0.5 0.75]
0.225 .1024] 0.5

0625 .0225}[0.75}  0.0801

APPLICATION: CALCULATING THE RISK ON
A PORTFOLIO

In the earlier sections we discussed how the APT model may be used to cal-
culate the risk on a particular asset. Now we will focus on assessing the risk
of an entire portfolio. Just as with a single security, the risk can be ex-
pressed as a sum of two components; namely, common factor risk and spe-
cific risk. We will adopt the approach in which we reason out the formulas
for each of these components, leading in turn to the expression for the risk
in a portfolio.

Let us start with the common factor variance for a security, which can
be computed if we know the factor exposures for the security and the factor
covariance matrix. The logic to evaluate the common factor variance for the
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TALKING POINTS

Bear in mind that the APT model is a linear model; that is, the return
is a linear combination of factor returns. Is that a limitation of the
model? Some would argue that linearity in returns is probably valid
only in a fixed range of values for the factor exposures. As the values
stretch more and more to the extremes, linearity leads to progressively
poor predictions of asset returns. This is akin to quite a few phenom-
ena encountered in the physical sciences where linear relationships are
valid only in a certain operating range.

With that said, if you happen to find yourself in a finance confer-
ence, in the middle of a discussion on APT at cocktail hour, here is
something to try out. Look to a distance, put a finger to your cheek
and proclaim wistfully, “I wonder what the consequences are of ne-
glecting the potentially inherent nonlinearities in the modeling
process. . ..”

In all likelihood, this will cause a whole lot of other people to also
wonder with you. If, however, someone were to probe further and ask
you to elaborate on your musings, you could always pretend to recog-
nize someone at a distance, smile politely, and excuse yourself, saying
that you need to mingle.

portfolio is also along the same lines. If we are able to evaluate the net fac-
tor exposure for the portfolio, then we can treat it as a single security and
evaluate the common factor variance using the formula discussed in the pre-
vious section. Let us therefore concentrate our efforts on the evaluation of
the factor exposure for the portfolio. The factor exposure of the portfolio is
simply the weighted sum of the factor exposures of all the securities in it.
The weight to be used for the exposure of each security is determined by the
weight of the security in the portfolio.

Let us consider a portfolio composed of two securities, A and B, with
exposure vectors given by e, and ej. Let the weights of the two securities in
the portfolio be b, and by, respectively. The exposure vector of the portfo-
lio is given as

epzhAeA+hB€B (3.11)

Assuming a two-factor model and writing out the formula in matrix form,
we have
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ﬂAl ﬂAZ
=\bh, b ’ ’ (3.12)
e = B][ﬂg,l ﬂ}
or
e, = hX (3.13)

That is, the exposure of a portfolio is given by the matrix product of the
holdings vector and the exposure matrix. Using the value in Equation 3.13
for the factor exposure of the portfolio, the common factor variance is given
by substituting the calculated exposure value:

oy =e,Ve, (3.14)

Performing the substitutions and applying the matrix identity on the trans-
pose of a matrix product, we have

o = hXVXTh" (3.15)

Let us now tackle the specific risk component. The specific risk is calculated
as the variance of the specific return. Now, the specific return on the port-
folio is the sum of the specific returns of the assets in the portfolio weighted
by the share of the security in the portfolio holdings. Also, note that by
model assumptions the specific returns of the securities are uncorrelated
with each other. If the returns are uncorrelated with each other, then the
overall variance is a weighted sum of the individual specific variances. In the
preceding two-security example, the specific variance is given as

0% i = b} Var( )+h Var(r ) (3.16)

specific

Writing this out in matrix form, we have

[hh]var( A) 0 {

o2 1] (3.17)

specific —

or

o2 . = hAbT (3.18)

specific

Adding it all together we are now able to put down an expression for the
total risk in a portfolio based on the portfolio holdings and the parameters
of the APT model. The risk/portfolio variance is therefore given as
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o2 =0} + 0, (3.19)

portfolio specific

bXVXTh™ + hAbT

The formula to evaluate the variance may be easily adapted to evaluate the
covariance between two portfolios. We will leave it to the reader to reason
out that the covariance between two portfolios Y and Z is given by

cov(ry, ;) = by XVXTh] + hyAb} (3.20)

In any case, the formula for variance in Equation 3.20 can be used to calcu-
late the risk in a portfolio.

Assuming normality, a two-standard-deviation movement on either side
of the daily mark to market should be able to catch the price movement for
the next day, 95 percent of the time. Yet in practice that may not turn out
to be the case. Let us therefore examine the points of failure of the model.
We start by listing the inputs to the risk calculation and then examine the
different scenarios. The key inputs are the factor exposures and the covari-
ance matrix.

When a big news event occurs with respect to a particular stock, the fac-
tor exposures that we use in the model for that stock are no longer valid. The
market now trades on the expectation that the factor exposures after the news
event are likely to be a lot different. The covariance structure between the fac-
tors is still intact. In any case, since the factor exposure input to the risk model
is no longer valid, the calculation breaks down for that particular stock.

The second scenario is the occurrence of a scenario-altering, huge macro-
economic event, for example, relating to interest rates. The big event typi-
cally manifests itself in the form of a liquidity crisis. In these situations, the
covariance structure breaks down, leading to the breakdown of the model.

Another explanation for observing price moves of more than two stan-
dard deviations of that expected by the Gaussian assumption is attributed to
the nonnormal fat-tailed distribution of asset returns observed in practice.
This can be somewhat addressed by calibrating the number of standard de-
viations to use in our assessment of the range of price movement. It is there-
fore important that users of the multifactor technology also be aware of the
potential points of failure in the model.

APPLICATION: CALCULATION OF
PORTFOLIO BETA

The topic of this section is more of a misnomer, and it likely to strike the
reader as an anomaly. We had earlier stated that the APT is a more
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advanced version of CAPM. Then, if we have access to the APT model, why
would we want to calculate the parameters of a simpler CAPM model? Ts
that not going back full circle? That would indeed be true. However, if we
are looking to hedge our portfolio with the market portfolio, then the hedge
ratio that provides the best possible hedge is given by the beta of the port-
folio. Therefore, it does make sense to calculate beta. While the title may as
well read “Determination of Hedge Ratio,” having the word beta in the title
helps make the association between beta and the hedge ratio explicit.

To see the relationship between beta and the hedge portfolio, consider
the linear combination of the two portfolios in the ratio 1:A. The return of
the linear combination is given by 7, — Ar,,, where 7, is the return on the port-
folio and 7, is the return on the market. The value of A that results in the least
return variance of the combined portfolio is indeed the best hedge ratio. To
evaluate the variance of the return, we will apply the algebraic identity

(a+b) =a® +b +2ab (3.21)
to the combined portfolio.
(rp - /lrm)z = rp2 + lzrjl - ZArprm (3.22)

Applying expectations on both sides and using the formulas in the appendix
of Chapter 1, we have

Var(rp - /lrm) = Var(rp) + 2 Var(rm) - 21 cov(rprm) (3.23)

To find the value for A that minimizes the variance, we differentiate with
respect to A and equate the differential to zero. It is easy to then see that

A= corlry ) (3.24)

var(rm)
Equation 3.24 also happens to be the definition of beta, and we therefore
conclude that beta is the best hedge ratio. Equation 3.24 is composed of the
covariance and the variance terms, which we know how to evaluate in the
APT framework. Applying the substitutions, we have

epVe; + hpAloz,
A= emVeZl + hmA/J; (3:23)
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where e, and e,, are the factor exposures of the portfolio and the market,
and b, and b, are their respective holdings vectors. We are thus able to eval-
uate the optimal hedge ratio.

APPLICATION: TRACKING BASKET DESIGN

A tracking basket is a basket of stocks that tracks an index. If the basket is
the same as the index, then the prices of both will be the same at all times.
However, if the tracking basket is composed of fewer stocks than the index,
then there is likely to be tracking error; that is, the returns for the tracking
basket are not exactly the same as the returns for the index. The discrepancy
in the returns is expressed in terms of tracking error.

Tracking error may be defined as the standard deviation of the differ-
ence in the return between the tracking basket and the index. In the defini-
tion of tracking error, the mean value of the difference is assumed to be zero.
To see this more clearly, consider a long-short portfolio where we are long
the index and short the tracking basket. The expectation is that the return on
the index and tracking basket is the same. Therefore, a profit made on one
leg of the portfolio is likely to be neutralized by an equal loss on the
other leg. The expected value of total return on the portfolio is therefore
zero. However, while the expected return is zero, it is possible for the actual
return value to be a nonzero value. The extent of this variation from zero is
captured by the standard deviation of returns of the long—short portfolio
and forms a measure of the tracking error.

A natural deduction from the preceding discussion is that the design of
a tracking basket involves designing a portfolio such that it minimizes the
tracking error. Writing out the equations for the variance of the error in re-
turns, we have

Min: E(rm - rp)z = Var(rm) + var(rp) -2 cov(rmrp) (3.26)

where 7, is the return on the tracking basket and 7,, is the return on the mar-
ket. Expanding the terms using APT constructs, we have

Min: b, XVXThT + b Abl + thVXThZ + hphg - (3.27)
TyT
= 2[b, XVXTh] + h,Ah,
Bear in mind that there are some constraints on the values of b,; that is,

some of them are forced to have zero values even though they are part of the
index.
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Note that in Equation 3.27, the variance of the market portfolio is not
at all affected by changing the composition of the tracking basket. The
only two terms that are affected when we change the tracking basket com-
position is the tracking basket variance and the covariance term. Therefore,
minimizing the tracking error is equivalent to minimizing the sum of the
two terms.

The error variance may also be viewed as a sum of two components;
namely, a common factor component and a specific component. Now, if we
were to design the tracking basket such that the factor exposures of the bas-
ket match the factor exposures of the index exactly (even though their con-
tents may not be identical), then the common factor component goes to
zero. We are now left only with the specific components of the variance. Re-
call from our earlier discussion that the contributions to the total variance
from the specific components are a lot less than they would be from the com-
mon factor component. Furthermore, if the two portfolios are highly diver-
sified, the expected value of the specific returns on the portfolios is zero.
Hence, the tracking error contribution in this case is solely due to the dif-
ferent specific returns in the portfolios. It is now easy to appreciate that a
good starting point to the design of tracking baskets will ensure that the fac-
tor exposures match as closely as possible. Hence, APT constructs may be
used to design tracking baskets.

SENSITIVITY ANALYSIS

In our discussion on the covariance matrix we talked about the mining syn-
drome, the idea being that the estimation of the covariance matrix is biased
to the past and may not hold going forward into the future. This apprehen-
sion may be objectively examined by studying the stability of the covariance
matrix.

One approach would be to estimate a sequence of covariance matrices
and study the variations between two consecutive ones. The extent to which
the variations affect the particular situation—say, the evaluation of beta, the
measurement of risk, or the design of tracking baskets—may be gauged by
perturbing the current covariance matrix with the sequence of observed
changes and running the calculations with the perturbed matrix.

This results in a set of values for the estimated parameter. We can then
treat the set of values as realizations from a probability distribution and get
an idea of the error in our estimates using the current covariance matrix to
help us quantify the extent of uncertainty due to the mining syndrome.
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SUMMARY

m Factor models are models that are used to explain the risk return char-
acteristics of assets and come in many flavors.

m Even though the details may vary, factor models are firmly based on the
principles of arbitrage pricing theory (APT).

m A factor model is considered fully specified by the factor exposures, the
factor covariance matrix, and the specific variance matrix.

m A factor model may be used as a framework to estimate many com-
monplace parameters that may be needed in the course of the investment
process.

m Examples of such computations include the estimation of risk on a port-
folio, the evaluation of portfolio beta, and computing the contents of a
tracking basket.

m The factor covariance matrix is a crucial piece of information that the
factor model provides. However, it must be used with care.
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Kalman Filtering

INTRODUCTION

Control theory is a branch of engineering that deals with the control of en-
gineering systems. The engineering systems could be from diverse domains,
and the applications include controlling the power output of an automotive
engine, stabilizing the rate of rotation of an electric motor, and controlling
the “rate of reaction” (or the speed of a chemical process). The control of
these systems is exercised by the manipulation of so-called control variables.
For example, in the case of controlling the power output of an automotive
engine, the control variable could be the amount of fuel injected into the en-
gine. This would control the thrust of the piston and therefore the power
output from the engine. Similarly, in the other two examples, the control
variables could be the amount of current flowing through the motor coils or
the ambient temperature of a chemical process. Thus, the control variables
provide a harness that helps us to control the system effectively.

Prior to the proposal of Kalman filtering, the typical approach for sys-
tem control involved the specification of a fully comprehensive mathemat-
ical model describing the system dynamics. The model is usually formulated
in the form of a differential equation. This helps to determine in a quanti-
tative manner the effects of the control variables on system dynamics. Con-
trol is then effected by manipulating the variables as prescribed by the
model.

Along with the preceding approach also came a painful realization of its
limitations. The mathematical models may not be 100-percent accurate, as
there may be some approximations used in the modeling process. Addition-
ally, the instruments used to measure the system parameters may have some
built-in inaccuracies that could result in measurement error. To compound
things even further, there may also be some extraneous disturbances to the
system that cannot be anticipated and modeled in a deterministic fashion.
Hence, the aforementioned methodology becomes increasingly harder to
implement as the systems grow in complexity.

92
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It was under these circumstances that the Kalman filter was proposed by
R. E. Kalman. He addressed these issues in a direct and practical manner and
presented his ideas in a ground-breaking article! titled “A New Approach to
Linear Filtering and Prediction Problems.” The approach caught the atten-
tion and imagination of the engineering community, and the ideas found ap-
plication in multiple domains.

One of the key contributions of Kalman’s article is the notion of system
state,” or the current state of the system. It is represented as a vector of the
current values of various system parameters. The vector itself is deduced
from a set of measurements on the system that is in turn translated into
system-state terms. This translation is typically modeled as a linear equation.
Thus, the means to make observations and the equation translating the ob-
servation into the system state fully characterize the notion of system state.

Having established the notion of system state, Kalman proceeded to
cast a dynamical system in terms of system states. A dynamical system in
the Kalman-filtering approach is modeled as a sequence of transitions from
one system state to another. These transitions are also modeled as linear
equations.

Next, he asserted that to monitor the system effectively (for purposes of
control) it makes sense to make an assessment of the state that we are cur-
rently in and the state that we expect to transition to in the next time step.
In other words, we are in a situation where we are constantly predicting the
next system state and taking measurements to verify the predictions. The
Kalman filter provides a prescription to reconcile this sequence of predic-
tions followed by measurements to arrive at a sequence of optimal estimates
for system states. This approach to thinking of systems as a sequence of state
transitions was a radical departure from the thinking at the time. It started
a revolution of sorts in the field of control theory and marks the beginning
of a new era in the field commonly referred to by many as Modern Conitrol
Theory.

So, how does this fit into our scheme of things? For one, we use the
Kalman-filtering technique to filter the noise from the observed spread in the
case of risk arbitrage. Describing this in the introduction therefore helps pro-
vide the context for its application later in the book.

To help to illustrate the Kalman-filtering ideas and also as a matter of
interest, we apply the Kalman-filtering concepts to smooth out a random
walk. Now, many practitioners of technical analysis make use of so-called
moving averages to smooth out or filter price series. This method of using
moving averages may be thought of as an attempt to estimate the sequence
of stock prices (states) after filtering out the noise. The common peeve

'Kalman, R. E. ( 1960). “A New Approach to Filtering and Prediction Problems.”
Transaction of the ASME Journal of Basic Engineering, 82(Series D), 35-45.
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The practical nature of the modeling process and solution approach
made the Kalman filter immediately applicable to a wide variety of sit-
uations. In fact, one of the first applications of the Kalman filter was
in the lunar module of Apollo 11, the spacecraft for the first landing on
the Moon. Therefore, if anything in the book should qualify as rocket
science, this definitely fits the bill. ©

against the moving averages has always been that they tend to lag when
there is a sharp and sudden change in price movement. The Kalman filter
can help construct better smoothers. Although we do not delve deeply into
the matter, we believe that this approach may very well contain the seeds of
reasoning for the observation of the so-called Fibonacci retracements, which
is well documented in the area of technical analysis.

THE KALMAN FILTER

Continuing on the theme of the previous section, the Kalman-filtering
process can best be described as a three-step process of prediction, observa-
tion, and reconciliation or correction. In the prediction step, we predict the
next system state based on our knowledge of the current system state. Along
with it, we also estimate the error in our prediction. This completes the pre-
diction step.
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Next we take a reading of the state of the system after allowing for a
fixed amount of time to elapse, the idea being that the system would now
have transitioned to the new state. The readings can be translated in system-
state terms based on a mathematical model. Similar to the prediction step,
we also estimate the error associated with our observation. The observation
along with an estimate of the error constitutes the observation step.

We now have two estimates for the states involved: one based on our
prediction and the other based on our observation. The natural next step is
then to reconcile the two state estimates, taking into account the magnitude
of the associated errors. Stating it differently, the predicted estimate is cor-
rected based on the observation. This is therefore called the correction step.
This reconciled estimate of the system state from the correction step is the
final estimate of the current system state.

The preceding process is then repeated again for the state at the next
time instance, making the Kalman filter a recursive prediction—correction
method. The preceding steps are also illustrated in the form of a diagram in
Figure 4.1.

The reader is probably now curious as to how the correction to the pre-
dicted value is effected. Let us discuss that briefly. Note that it is possible to
translate the prediction of the next state into a set of expected observations.

Estimate Observation
Error Variance

Observation Step
Take Measurements

Get Reconciled
State Estimate
+
Variance of
Estimate

Prediction Step p| Estimate Prediction Error
Predict Next State Variance
A

Use Reconciled State Estimate for Prediction

FIGURE 4.1 The Kalman Filtering Process.
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Let us call this as the predicted observation. The equation for the corrected
state in a Kalman filter is given as

corrected State = predicted state + k (actual observation —
— predicted observation)

The difference between the actual observation and the predicted obser-
vation is called the observation innovation. Note that a fraction of the ob-
servation innovation is added as a correction to the predicted state. The
value of this fraction k is known as the Kalman gain. The Kalman-filtering
approach provides a prescription on what would be the most appropriate
value to use for k. This value is decided such that the corrected state has the
least amount of error variance associated with it.

Besides providing the prescription to reconcile the prediction and ob-
servation, Kalman also provided definitive proof that the process is indeed
optimal in the case where the mathematical models of state and observation
are both linear and the errors are drawn from independent Gaussian distri-
butions. We will, of course, not delve into the proofs, but rather try to ex-
plain the basic idea by way of illustrations. With that said, we introduce
some notation and formally list the steps involved in the Kalman-filtering
process.

Let X, denote the state at time #. Note that the value for the state can
also be a vector; that is, the state has a multidimensional representation. The
mathematical model used to predict the state at time ¢ in a Kalman filter set-
ting is typically of the form

X, =AX, 4 +u, (4.1)

where A is a matrix, X, and X, are the state vectors at time # and # — 1, re-
spectively, and #, is the error vector that accounts for the impreciseness of
the model. Next we make an observation at time ¢. Let us call this observa-
tion Y,. The measurements made are a linear combination of the state ele-
ments and therefore can be written as

Y, = HX, + v, (4.2)

In this scenario the values of the matrices A and H are known. Initially
we make a prediction of the state at time #, knowing all the state informa-
tion up to time #— 1. Let us denote this estimate X .r_1+ The error is measured
as the variance in the case of a single dimensional state and as a covariance
matrix in the case of a multidimensional state.

Let us denote it generally as IA’tI ,_;- Just as in the case of the predicted
value, the measurement also has an error variance/covariance matrix associated
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with it. Let us call that R. We are now ready to formally list the steps in the
Kalman-filtering process as follows:

1. Evaluate )A(”H and IA’t,H

2. Find the observation Y, and R by observing the system.

using the state equation.

3. Evaluate K,, also known as the Kalman gain, which will be used to ob-
tain the linear minimum error variance estimate.

4. Evaluate X, o1 F Kt(Yt - HX,,, )
5. Finally, evaluate P,, the error variance/covariance of X e

given by X

These steps are repeated again for the next time step. The formulas for
the evaluations at each step are relegated to the appendix at the end of this
chapter. Upon examining the equations in the appendix, one can say that
they do seem a little cryptic, and the reasoning and rationale behind them is
not evident. In the subsequent sections we will illustrate the ideas behind the
equations.

THE SCALAR KALMAN FILTER

In this section, we will discuss the estimation of the value of a constant. Let
us first examine how to do it in normal course. The typical method would
be to take multiple measurements of the value and use the average of the
measured values as an estimate of the constant. The reasoning behind the
approach is that the measurements could have errors associated with them;
that is, some measured values could be greater than the true value of the
constant, and others could be lower. By taking an average of the values, we
expect the errors to cancel each other out. More precisely, the standard de-
viation of the error in the average goes down by a square root of #n factor,
where 7 is the number of measurements.

The consequence of this method is in fact a well-known statistical con-
cept. By increasing the number of observations of a constant variable and
taking averages, we can make the error in our estimate of the constant as
small as desired.

However, a caveat to that approach is that we will need to wait until the
last of the # measurements have been completed before coming up with an
estimate of the constant (which may not be a bad idea at all). The Kalman
filter, however, makes an estimate of the value of the constant based on the
current available information and updates the estimate as and when more
observations are made. Of course, the result after # observations in both
cases will be the same.
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Note that if the error variances associated with different observations
are the same, then a simple average will be fine. However, in the case where
the observed values have different levels of accuracy, we would like to assign
more weight to the observations with greater accuracy. In such cases, instead
of taking a simple average that weights each point uniformly, a weighted av-
erage solution would be more appropriate. We will illustrate how to address
the weighted average situation using the Kalman filter concepts and thereby
hope to provide some insight to the calculation of the Kalman gain.

In the estimation of the constant value, the system state is the one-
dimensional constant value itself. Let us say that our current estimate of the
constant value is x; with error in the estimate being €;, that is,

R
Xjji

=x+¢ (4.3)
x is the true value of the constant. Although we do not know what the exact
value of g; is, we do know that it has a zero mean and known variance given
by o2 .. Let us now do the prediction step. Since the value stays a constant,

1

our prediction for the next state is the current value itself. Therefore, we have

. _ 2 . _ =2
Xisali = xi’Var(xi+1Ii) =0, (4.4)
Next we make a measurement. Let us call the measurement of the constant
value y; and the error associated with it n; with zero mean and known vari-
ance given as 0'5 .. Therefore at the end of the measurement step, we have the
observation
2

y, = x+ ni,var(yi) =0,, (4.5)
We now have a prediction and an observation, and we wish to reconcile the
two values. We do this in the reconciliation/correction step where we correct
the predicted value based on the observation. Writing out the correction
equation, we have

A

Xivtiar = Xy F k(yi - xi+1|i) (4.6)
Note that this can be rewritten as

3AC;‘+1|;+1 = (1 - k)’%

+ ky, (4.7)

i+1li

That is, the corrected state estimate is a weighted average of the two state
estimates, with k, the Kalman gain, being the weight. The choice for the
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Kalman gain must be such that the error variance of the final estimated
state is minimized. Writing out the variance for the final state estimate we
have

Var(fciﬂlm) = (1 - k)z Var(fchi) + k? Var(yi) = (1 - k)zof’i + kzofm (4.8)
The task is now to find the value of k that minimizes the variance. In-
stead of doing the derivation mathematically, we will arrive at the value of
k by analogy to some high school circuit theory. Consider the parallel circuit
as shown in Figure 4.2.

The fraction of current flowing into each arm of the circuit £ and 1 - k
is shown in Equation 4.10. According to Ohm’s law, the current flow
chooses the path of least resistance, and the flow on each arm is inversely
proportional to the resistance of that arm. According to Kirchoff’s law, the
sum of the current flowing through each arm of the circuit must be equal to
the total current flow I. Also, the flow of current is such that minimum en-
ergy is expended in the process. The energy of the circuit is given as

E-= 12[(1 ~ k)R, + szn] (4.9)

Equating R, = 02 and R, = 07, it is now easy to see the similarity between
the two situations. The fraction of current and the Kalman gain is given as

k=—-+*— (4.10)

€

I(1-k)

\ A

FIGURE 4.2 A Parallel Circuit.
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The effective resistance of the circuit or the equivalent variance of the com-
bination is given as

2
R.R, o0

2

— — n
2 2

R, +R, o, +o0,

(4.11)

R = Var(xi+1li+1 )

Having determined the value of k£, we can now compute the corrected
state and the variance of the corrected state. The process is now repeated
again for the next measurement until we reach the last of the planned 7
measurements. The final outcome of taking a weighted average after mak-
ing all the measurements will work out to be the same value calculated using
the Kalman procedure.

FILTERING THE RANDOM WALK

Let us now discuss the application of the Kalman filter to the random walk.
From Chapter 2, on time series, we know that a random walk series is a sim-
ple sum of white noise realizations up to the current time. In other words,
the next point in the random walk series is evaluated by adding to the cur-
rent point a random drawing from a Gaussian distribution. Also note that
this has relevance to stock prices, as the logarithm of stock prices is typically
modeled as a random walk.

Now suppose we are assigned the task of watching the random walk.
The outcome of the watching exercise is to come up with the random walk
series. In stock price terms, the watching exercise translates to coming up
with a time series of stock prices. To do that, we observe the prices at regu-
lar time intervals and record them. The resulting sequence of values consti-
tutes a random walk, and our mission is accomplished. Note that the last
traded price at each instance is known without error, and it is therefore pos-
sible to observe the series without error. And if there is no error in the ob-
servation, then the Kalman filter model does not apply. So why do we even
attempt such an exercise?

We address this matter in the following discussion. Broadly speaking,
the price at any given time instance may be construed as the price at which
the supply meets demand. Let us call this the equilibrium price. Let us now
frame the aim of the watching exercise as generating the sequence of equi-
librium prices over consecutive time intervals. In this context, the periodic
measurement approach amounts to using the observed price at a specific
time as the equilibrium price for the time interval. It is now easy to make
the case that the prices at the end of regular chunks of time are indeed ap-



Kalman Filtering 61

proximations of the equilibrium price for the time chunk, and the notion of
observation error begins to make sense. It is therefore definitely reasonable
to apply Kalman-filtering ideas to stock price series with the logarithm of
prices modeled as a random walk.

Summarizing the discussions so far, we have assigned ourselves the task
of watching a random walk and making observations at regular time inter-
vals. Each of the observations has a measure of error associated with it. The
purpose of the exercise is to come up with a plausible set of system states.

Keeping with the notational conventions already established, let us de-
note the sequence of observations starting from time # = 0, the beginning of
our watching exercise as y,, and the true states as x,. The observation equa-
tion may be written vy, = x, + ¢, that is, the observation is the true state plus
some error. Now, according to the definition of the random walk, we also
have x, = x,_; + & (the current state is the previous state plus an innovation).
Writing this as a sequence of predictions and observations, we have

Yo = Xo + € (observation)
Xy =X+ & (prediction)
Yi=X1+e (observation)
Xy =X+ & (prediction)
Y2=%X2+ € (observation)

Writing the equations in matrix form, we have

Yo 1 0 0 e,
o [-1 0 x, g
y.|=10 Of x|+ ¢
0 0 -1 1|x, —£,

v, L0 O 1] | € ]

For notational convenience let us denote the system of equations as
Y, =H, X, +m,

The 2 in the subscript is the index of the state and is indicative of the num-
ber of state estimates used in forming the equations. The above is a set of five
equations with three unknown values x(,x;,x,. Given that there are more
equations than unknowns, the system is also referred to as an overdeter-
mined set. If the errors at each stage are drawn from identical, independent
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normal distributions, then the typical solution to the overdetermined set is
obtained by applying the least squares method:

-1
X, = (HIH,) HIY, (4.12)

That is, we multiply both sides by the transpose of H,, to get a system of
three equations with three unknowns and then solve the system of equa-
tions. This would be our solution method in the normal course.

Now let us move on to the next observation y;. Upon obtaining the new
data point, the estimate of our state is determined by the solution of the
equation

Y; = H3 X5+ 13

a system of seven equations with four unknown variables. We could then use
the typical approach to solve the overdetermined equations and obtain an
estimate for the value of x;. Note, however, that as the number of observa-
tions increases, the size of the matrices grows, and the computational costs
could potentially go up. It is here that the Kalman-filtering algorithm comes
to our rescue. The results from the previous computations are used in an it-
erative fashion to estimate the value of the next state. The value of x, and its
variance as calculated in the previous step is used in the evaluation of the
state x3, thereby keeping the computational cost of evaluating the next step
the same regardless of how far down the time scale we are.

Regardless, the end result of the state estimate in the Kalman-filtering
case is the same as solving the set of equations using the least squares ap-
proach. Note that we have made an important assumption in the process;
that is, the state variance at each time step is equal to the observation vari-
ance. (This is in addition to the assumption of independence of the error dis-
tributions.) Thus, with the preceding assumptions, the Kalman filter boils
down to a least squares solution of equations. The twist is that the solution
is calculated in a recursive fashion. This version of the Kalman filter is there-
fore known as the recursive least squares method.

The assumption of identical and independent error distributions mani-
fests itself in the covariance matrix of the errors. The independence also im-
plies that the errors are not correlated. Therefore, the off-diagonal elements
in the covariance matrix are all zero. The diagonal elements in the covari-
ance matrix are the variances of the error terms. If they are drawn from iden-
tical distributions, then the variances should be the same. Therefore, the
covariance matrix in this case may be represented as the identity matrix mul-
tiplied by a constant.

Let us now turn our attention back to the solution of the preceding
model. It turns out that the estimated state at a given time for that set of
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equations can be represented as a weighted linear combination of the obser-
vations. Additionally, the weights are actually ratios of Fibonacci numbers.
The Fibonacci sequence of numbers is constructed starting from two seed
numbers, F, = 0 and F, = 1. The next number in the series is generated by
adding the last two numbers in the series, F, = F,_; + F,_,. Applying the for-
mula in an iterative fashion, we obtain the Fibonacci sequence as follows:

0,1,1,2,3,5,8,13,21, 34, ....

There are a variety of situations in which the Fibonacci numbers appear.
Some sources of information on Fibonacci numbers are listed in the refer-
ence section. In any case, the solution to our problem, that is, the estimate
of state x,, is given as

N 2
X, ==Y, +—y, +

g2 7% Yo

Similarly, x5 is given as

13 S 2 1
X3 =57V T Tyt 1%

In general, if we are to estimate x, then

X7 = WY + W1YTq + WY + « et (4.13)
where
) Fz(T+1)—1 FZ(T+1)—3 FZ(T+1)—5 F (4.14)
Wy Wiy Wy sy Wy | = R R yeres .
Fz(T+1) Fz(T+1) FZ(T+1) FZ(T+1)

Note that the first weight is the ratio of two consecutive Fibonacci numbers.

E
The ratio —2T*_ approaches the value g. The value g is famously known as
2T+1)-1
the golden mean ratio. It is given by the formula g = (1 + \E) / 2 and has
an approximate value of 1.618. The first weight in the observation is actu-
ally the reciprocal of the ratio & = 0.618. The subsequent weights are %,

Ve, ....and so on. To see that the second ratio is %, consider the following:
FZ(T+1)—3 FZ(T+1)—3 FZ(T+1)—2 FZ(T+1)—1 1

= = —3 (4.15)
FZ(T+1) FZ(T+1)—2 FZ(T+1)—1 FZ(T+1) g
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We will once again draw attention to the fact that the solution presented
in Equation 4.135 stays valid only when the state variance is equal to the ob-
servation variance. In other situations, we need to obtain an estimate of the
state and observation variance at each time step. We will therefore conclude
this section with a brief discussion on the estimation of the state and obser-
vation variances.

In general random walk terms, the state variance can be estimated as the
variance of the innovations. Modeling the stock price series as a random
walk, the innovations correspond to the period returns of the price series.
The state variance in this case is therefore the variance of the period returns.
This calculation is rather commonplace in financial circles and is often re-
ferred to as historic volatility. The observation variance is, however, a tricky
issue. Let us assume that in addition to the closing price in a time interval,
we also observe the high and low stock prices within the interval. The vari-
ance of the error in the observation must be the volatility of the stock price
in the time period. This volatility is characterized by high and low values.
Several methods to estimate the volatility based on the high—low prices exist,
and the references are provided in the reference section. One may use any
one of the methods described in the papers in the appendix to estimate the
observation variance. Once the state and observation variances are known,
we are ready to apply the Kalman-filtering approach.

APPLICATION: EXAMPLE WITH THE
STANDARD & POOR INDEX

Is it conceivable that the observation and innovation variance will be the
same? Why not? After all, they are both representative of the volatility of the
same underlying random walk. Let us therefore see how we fare in practice.
We apply the random walk-filtering process with all its assumptions on the
Standard & Poor (S&P) index. We use the closing prices of the S&P index
depository receipt (spidr) with ticker SPY in our example. As discussed in
the section Filtering the Random Walk, we use Equation 4.13 to determine
the state of the process at a given time. The weights in Equation 4.15 are
determined using Fibonacci numbers. Note that if we decide to use T + 1
observations in the state estimation process, the weight of the last data

. This is the fraction

point according to Equation 4.14 is given by
2(T+1)
of the oldest data point used in the estimate. It turns out that this value ap-

proaches zero rather quickly, and its contribution to the value of the state
becomes insignificant as T increases. In order to demonstrate the point, we
constructed a plot of the reciprocals of the Fibonacci series in Figure 4.3.
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FIGURE 4.3 Reciprocals of Fibonacci Numbers.

Therefore, numerically speaking, it may be sufficient to use, say, the last
10 observations in the state estimation process. Table 4.1 lists the weightings
to use for the 10 observations.

With the available weights and the observations, the computation
process becomes a simple calculation of the weighted average of the ob-
served values, resulting in a unique sequence of states. This set of states is
optimal under the assumptions discussed.

Although this is all nice, note that the typical user of moving averages
probably works with them over multiple time periods. The time periods are
used to modify the coarseness of the approximation, and it may be argued
that looking at moving averages calculated over multiple time frames gives

TABLE 4.1 Reciprocals of Fibonacci Numbers.

1 2 3 4 N 6 7 8 9 10
0.6180 0.2360 0.0901 0.0344 0.0131 0.0050 0.0019 0.0007 0.0002 0.0001
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the technical analyst additional information. The question before us now is,
therefore, how can we fine-tune the coarseness of the approximations using
the Kalman filter?

To achieve varying levels of coarseness using the Kalman filter, we make
use of an important property that relates to the sampling of a random walk
sequence; that is, the random walk sequence sampled at any frequency results
in a random walk sequence. To see why that is, consider a random walk se-
quence with observations at times 1, 2, 3, and so on. By definition, the ob-
servation at time 1 plus a value drawn from a normal distribution gives the
observation at time 2, and so on. Now let us sample the random walk at half
of the original observation frequency. This results in a new sequence with
the values for the times 1, 3, 5, and so on. Note that the value at time 3 is
given by the value at time 1 plus a drawing from a normal distribution to get
it to time 2, and then again by adding another drawing from a normal dis-
tribution to get it to time 3. Thus, the transition from time 1 to time 3 is ef-
fected by summing two random drawings from independent normal
distributions and, in turn, adding it to the value at time 1. But the sum of

4.60 -
4.55 -
4.50 -
4.45 -
4.40 - --o—- Log of S&P daily close
o Smoothing with two-period sampling

0 10 20 30 40 50 60 70
Days

FIGURE 4.4 Kalman Smoothing of Random Walk.
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two independent normal random variables may itself be treated as a draw-
ing from a normal distribution with an adjustment to the variance of the dis-
tribution. Therefore, the transition from time 1 to time 3 is also effected by
adding the value at time = 1 to a drawing from a normal distribution. This
therefore fits the definition of a random walk sequence. We only need to
apply this idea in an iterative fashion to see that the random walk sequence
sampled at any frequency results in a random walk.

Armed with this information, we can conclude that the Kalman smooth-
ing approach may be applied to the random walk sequence sampled at mul-
tiple frequencies to achieve varying degrees of coarseness. In our example,
we calculate the state values by sampling the random walk at half the fre-
quency of the available data. Suppose we need to calculate the value of the
state at time ¢ = 22. We use the observations y,5,Y20,Y13, - - - - Similarly, to es-
timate the state value at time ¢ = 23, we use the observation values
¥23,Y215Y195 - - - - The resulting smoothing on the logarithm of the S&P prices
is shown in Figure 4.4.

SUMMARY

m The Kalman filter is an optimal state estimation process applied to a dy-
namic system that involves random perturbations.

m Inherent in any discussion on the Kalman filter are the notions of state
and observation.

m Kalman filtering may be summarized as a three-step process comprising
prediction, observation, and correction, or reconciliation of the predic-
tion with the observation.

m The simplest case of the Kalman filter reduces to finding the average of
n numbers.

m The recursive least squares method is also a special case of the Kalman
filter that may be applied to filtering random walks.

m When the state and observation variances are the same, that is, the sig-
nal-to-noise ratio is unity, then the estimation of the Kalman states for
a random walk boils down to a weighted average of the observations,
with the weights formed by ratios of Fibonacci numbers.

m The degree of smoothness to be achieved in a random walk can be con-
trolled by varying the sampling rate of the random walk sequence.
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APPENDIX

We describe the formulas for the Kalman filtering steps here. The notation
we use is the same as that discussed in the section on the Kalman filter.

1. Evaluate )A(”H and IA’tIH using the state equation.
tht—l = AXt—lIt—l
P, =AP , AT

t—1lt-1

2. Find the observation Y, and R by observing the system. Note that we
have the matrix H defined as follows:

Y, = HX, + v,
3. Compute the Kalman gain K,.

-1

K, = BHT(HPH™ +R)

4. Evaluate X,, given by X,,,_,

+ K (Y, - HX,,, )

5. Evaluate P,,.

A

P, =(1- KH)P

tle-1

(1- KH)" + KRK”
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HISTORY

The first practice of statistical pairs trading is attributed to Wall Street
quant Nunzio Tartaglia, who was at Morgan Stanley in the mid 1980s. At
the time, he assembled a group of mathematicians, physicists, and computer
scientists. Their mission was to develop quantitative arbitrage strategies
using state-of-the-art statistical techniques. The strategies developed by the
group were automated to the point where they could generate trades in a
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mechanical fashion and, if needed, execute them seamlessly through auto-
mated trading systems. At that time, trading systems of this kind were con-
sidered the cutting edge of technology.

One of the techniques they used for trading involved trading securities
in pairs. The process involved identifying pairs of securities whose prices
tended to move together. Whenever an anomaly in the relationship was no-
ticed, the pair would be traded with the idea that the anomaly would correct
itself. This came to be known on the street as “pairs trading.” Tartaglia and
his group employed pairs trading with great success in 1987. The group,
however, disbanded in 1989. Members of the group found themselves in
various other trading firms, and knowledge of the idea of pairs trading grad-
ually spread. Pairs trading has since increased in popularity and has become
a common trading strategy used by hedge funds and institutional investors.

MOTIVATION

Let us now explain the idea behind pairs trading. The general theme for
investing in the marketplace from a valuation point of view is to sell over-
valued securities and buy the undervalued ones. However, it is possible to
determine that a security is overvalued or undervalued only if we also know
the true value of the security in absolute terms. But, this is very hard to do.
Pairs trading attempts to resolve this using the idea of relative pricing; that
is, if two securities have similar characteristics, then the prices of both secu-
rities must be more or less the same. Note that the specific price of the secu-
rity is not of importance. The price may be wrong. It is only important that
the prices of the two securities be the same. If the prices happen to be dif-
ferent, it could be that one of the securities is overpriced, the other security
is underpriced, or the mispricing is a combination of both.

Pairs trading involves selling the higher-priced security and buying the
lower-priced security with the idea that the mispricing will correct itself in
the future. The mutual mispricing between the two securities is captured by
the notion of spread. The greater the spread, the higher the magnitude of
mispricing and greater the profit potential. A long—short position in the two
securities is constructed such that it has a negligible beta and therefore min-
imal exposure to the market. Hence, the returns from the trade are uncorre-
lated to market returns, a feature typical of market neutral strategies.

Based on the discussion so far, it is easy to deduce that the key to suc-
cess in pairs trading lies in the identification of security pairs. In a study by
Gatev et al., a purely empirical approach to achieving this end was adopted.
They methodically chose pairs based entirely on the historical price move-
ment of securities and checked to see how pairs trading would have fared in
a double-blind study. Besides the set of pairs chosen using historical prices,
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another set of pairs was created by randomly pairing the securities with one
another. The trades that would have been executed based on the empirical
pairing approach were then pitted against the trades where the securities
were randomly paired. The difference in the returns between the two groups
was found to be statistically significant, and the return generated by the me-
thodically paired set was better than the randomly paired sample set.

Unlike the purely empirical approach, the methodology that we sub-
scribe to comprises theoretical valuation concepts that are then validated
with empirical models and data. We will later show that the theoretical val-
uation approach helps us to easily identify pairs based on the fundamentals
of the firm. It also leads naturally to the formula used to measure the spread,
the degree of mispricing between the two securities. Our theoretical expla-
nation for the comovement of security prices stems from arbitrage pricing
theory (APT). According to APT, if two securities have exactly the same risk
factor exposures, then the expected return of the two securities for a given
time frame is the same. The actual return may, however, differ slightly be-
cause of different specific returns for the two securities. It is important to
note at this point that APT for the two securities has to be valid in all time
frames. Let the price of securities A and B at time ¢ be p;* and p?, and at time
t+ibe pf, and p? , respectively. The return in the time period i for the two
securities is given as log(p;') — log(py,) and log(p?) — log(pZ,).!

Now let us say that we have the prices of both securities at the current
time. The return on both securities is expected to be the same in all time
frames. In other words, the increment to the logarithm of the prices at the
current time must be about the same for both the securities at all time in-
stances in the future. This, of course, means that the time series of the loga-
rithm of the two prices must move together, and the spread calculation
formula is therefore based on the difference in the logarithm of the prices.

Having explained our approach, we now need to define in precise terms
what we mean when we say that the price series or the log price series of
the two securities must move together. Fortunately for us, the idea of co-
movement of two time series has been well developed in the field of econo-
metrics. We discuss it in the following section on cointegration.

COINTEGRATION

In the introduction to time series we briefly discussed the preprocessing step
for nonstationary series. The series is typically transformed into a stationary

Pvi — Dy

'The value as calculated here is approximately equal to =*—=*. Thus, return can

be thought of as the increment in the logarithm of the prices.t
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time series by differencing. By extension, when analyzing multivariate time
series where each of the component series is nonstationary, it would then
make sense to difference each component and then subject them to exami-
nation. However, that need not be the case.

In the course of examining multivariate series to determine statistically
if there is a cause-effect relationship between the variables represented by
the time series, the econometricians Engle and Granger observed a rather in-
teresting phenomenon. Even though two time series are nonstationary, it is
possible that in some instances a specific linear combination of the two is ac-
tually stationary; that is, the two series move together in somewhat of a
lockstep. Engle and Granger coined the term cointegration and proposed
the idea in an article, the reference for which is at the end of this chapter.
Notably, this was one of the ideas for which they won the Nobel Prize in
economics in 2003.

Let us now state the idea of cointegration more formally. Let y,, and x,
be two nonstationary time series. If for a certain value v, the series y, — yx, is
stationary, then the two series are said to be cointegrated. Real-life examples
of cointegration abound in economics. In fact, the first demonstrations and
tests of cointegration involved economic variable pairs like consumption
and income, short-term and long-term rates, the M2 money supply and
GDP, and so forth.

The explanation for cointegration dynamics is captured by the notion of
error correction. The idea behind error correction is that cointegrated sys-
tems have a long-run equilibrium; that is, the long-run mean of the linear
combination of the two time series. If there is a deviation from the long-run
mean, then one or both time series adjust themselves to restore the long-run
equilibrium. The formal theorem stating that error correction and cointe-
gration are essentially equivalent representations is called the Granger rep-
resentation theorem. We shall not attempt to discuss the proof of the
theorem, but simply present here the error correction representation.

Let €,, be the white noise process corresponding to time series {xt .
Let €, be the white noise process corresponding to the time series { yt}. The
error correction representation is

Ve =V T ay(yt—l - sz_l) + gyt (5.1)

Xy =X = ax(yt—l - Yxt—l) + gx,

Let us interpret the Equations 5.1. The left-hand side is the increment to the
time series at each time step. The right-hand side is the sum of two expres-
sions, the error correction part and the white noise part. Let us look at the
error correction part o(y, | — yx,;) from the first equation. The term y, ; —
¥x,_; is representative of the deviation from the long-run equilibrium (equi-
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librium value is zero in this case), and yis the coefficient of cointegration. o,
is the error correction rate, indicative of the speed with which the time series
corrects itself to maintain equilibrium. Thus, as the two series evolve with
time, deviations from the long-run equilibrium are caused by white noise,
and these deviations are subsequently corrected in future time steps.

We will now illustrate that the idea of error correction does indeed lead

to a stationary time series for the spread. Two independent white noise se-
ries with zero mean and unit standard deviation were generated to represent
g, and €_, respectively. The other values were set as o, =-0.2, ot = 0.2, and
y = 1.0. Note that it is important to have the two coefficients a, and o, set
to opposite signs for error-correcting behavior. The values for the two time
series {xt} and yt} were then generated using the simulated data and the
equations from the error correction representation. A plot of the two series
is shown in Figure 5.1.
Subsequently, the spread at each time instance was calculated using the
known value for 7. A plot of the spread series and its autocorrelation is
shown in Figures 5.2a and b. It is easy to appreciate from the autocorrela-
tion function that the spread series is indeed stationary.

A more direct approach to model cointegration is attributed to Stock and
Watson, called the common trends model. The primary idea of the common

10

—— Time Series 1
---a--- Time Series 2
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FIGURE 5.1 Cointegrated Time Series.
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trends model is that of a time series being expressed as a simple sum of two
component time series: a stationary component and a nonstationary com-
ponent. If two series are cointegrated, then the cointegrating linear compo-
sition acts to nullify the nonstationary components, leaving only the
stationary components. To see what we mean, consider two time series

v =m, +e, (52
g, =n, e,
where 7, and n_ are the random walk (nonstationary ) components of the

t
two time series, and g, and g, are the stationary components of the time
series. Also, let the linear combination ¥, — ¥z, be the cointegrating combi-
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nation that results in a stationary time series. Expanding the linear combi-
nation and rearranging some terms, we have

Y = Y% =, —yn )+(, —VE ) (5.3)

If the combination in Equation 5.3 must be stationary, the nonstationary
component must be zero, implying that 7, = yn,,or the trend component
of one series must be a scalar multiple of the trend component in the other
series. Therefore, for two series to be cointegrated, the trends must be iden-
tical up to a scalar. In later chapters, we will rely on the Stock-Watson
model to establish links between arbitrage pricing theory and cointegration.

HIGHLIGHTING THE POINT

This is an anecdote about an ingenious little kid. He was asked on a
test to say a few sentences about a cow. The poor lad knew only how
to say a few sentences about a tree. Thinking for a moment, the kid in
his first sentence tied the cow to a tree and then went on to talk about
the tree. The example is probably a little tongue in cheek. It is, how-
ever, true that there is a strong urge to relate the unknown to some-
thing familiar and enhance understanding through association.

To further underscore the point, it is worth mentioning that the
spirit of that approach actually forms the basis for formal proof tech-
niques in mathematics. Proof by induction, a technique attributed to
Cantor, relies on forming a series of logical relationships from the
most general to the most trivial. Proofs of NP completeness, used to
classify algorithms in the area of computational complexity theory (at-
tributed to Richard Karp), also rely on transformations to a known
problem. It is probably safe to say that in almost all fields of human
endeavor there is a common tendency to relate the intractable to some-
thing manageable and leverage existing knowledge to arrive at mean-
ingful conclusions.

We are no different from everyone else in this respect. When faced
with the prospect of having to work with nonstationary time series, we
immediately look for ways to construct portfolios that can be related
to stationary time series. The transformation to stationarity is typically
achieved using cointegration ideas and strict parity relationships.
Needless to say, this approach appears as a recurrent theme in the de-
sign of trading strategies across all asset classes.
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APPLYING THE MODEL

In this section, we fit the cointegration model to the logarithm of stock
prices. For the cointegration model to apply, we would require the logarithm
of stock prices to be a nonstationary series. The assumption that the loga-
rithm of stock prices is a random walk (read as nonstationary) is a rather
standard one. It has been used fairly extensively in option-pricing models
with satisfactory results. We are therefore good on that assumption and
ready to proceed further.

Let us say that two stocks A and B are cointegrated with the nonsta-

tionary time series corresponding to them being {log(pf‘)} and {log(pf)},

respectively. Applying the error correction representation described here,
we have

log(PtA) - log(p{‘,]) =0, log(pﬁl) -y log(ptl:) +e, (5.4)
log(Pf) - log(Pf,l) = o log(pﬁl) -y log(pf{l) + &g

The parameters that uniquely determine the model are the cointegration co-
efficient y and the two error correction constants a, and o. Therefore, es-
timating the model involves determining the appropriate values for o, o,
and 7. The left-hand side of the Equations 5.4 is the return of the stocks in
the current time period. On the right-hand side, note the expression for the
long-run equilibrium, log(p{*,) — 7.log(p?,), in both the equations. In
words, it is the scaled difference of the logarithm of price. Incidentally, this
coincides with what we termed the spread in our earlier discussion. Also no-
tice that the subscripts for stock prices in the expression for the long-run
equilibrium is  — 1. The past deviation from equilibrium plays a role in de-
ciding the next point in the time series. Therefore, knowledge of the past re-
alizations may be used to give us an edge in predicting the increments to the
logarithm of prices; that is, returns. This is important and exciting. Even
though both stocks follow a log-normal process, one can eke out some pre-
dictability in their returns based on past realizations. Thus, one can attempt
to trade either of the stocks in the pair based on predictions using the esti-
mated values from the error correction representation.

Let us now focus on the cointegration part of the representation theorem.
This is the assertion that the time series of the long-run equilibrium (also
termed spread in our case) is stationary and mean reverting. Now, we defi-
nitely know a lot about predicting stationary time series. If only we could as-
sociate the time series of the spread to a portfolio, we could consider trading
the portfolio based on our prediction of the time series values. We proceed
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to do exactly that. Consider a portfolio with long one share of A and short
v shares of B. The return of the portfolio for a given time period is given as

[log(p.) - log(p{)] - ¥[log(pF;) - log(p?)]. (5.5)

COINTEGRATION AND TRACKING ERROR

Tracking error is an idea that arises naturally in the context of an in-
vestment technique called indexing. The basic premise for indexing is
the notion that it is extremely hard to time the market. Therefore, the
strategy adopted is to passively invest in the market index. Alternately,
to reduce trading costs, the investment is made in portfolios designed
to mimic index returns. These portfolios are sometimes referred to as
tracking baskets. The ability of the tracking basket to mimic the mar-
ket returns is characterized by its tracking error. The tracking error
may therefore be thought of as a measure of discrepancy or margin of
error that one can expect in the tracking process.

Implicit in the definition of tracking error is the time interval for
which the returns are measured. It is typically one year (assumed to
have 252 trading days). If the holding period is different from one
year, then the tracking error needs to be scaled accordingly. The con-
vention is to assume that the tracking error is a random walk series
and scale the tracking error using the formula below. If T is the hold-
ing period for the portfolio, then

_ err(1 year)

V252

The tricky part here is in the random walk assumption for tracking
error in the process of scaling. In the case of long—short portfolios con-
sisting of cointegrated stocks, the tracking error is not a random walk
series. As a matter of fact, it is a stationary time series. The variance or
standard deviation in this case is independent of the holding period. In
other words, the tracking error remains the same regardless of the
holding period, and scaling formulas are not required.

We therefore caution against making the random walk assump-
tion blindly, particularly in indexing situations, because they tend to
distort the tracking error.

err(T) T (5.6)
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Rearranging the terms a little bit, we have

[log(pA,) - 7 log(pF.,)] - [log(pi') - ¥ log(p?)] = spread, ; - spread, (5.7)
Therefore, the return on the portfolio is the increment to the spread value in
the time period i. We have successfully associated a portfolio with a sta-

tionary time series. The one thing that remains is providing an interpretation
for v, the cointegration coefficient. We will discuss this in later chapters.

A TRADING STRATEGY

We now construct a simple trading strategy. The idea is to trade on the os-
cillations about the equilibrium value for the spread. We could put on a
trade upon deviation from the equilibrium value and unwind the trade when
equilibrium is restored. However, note that the equilibrium value is also the
mean value of the time series. Therefore, given that the spread swings
equally in both directions about the equilibrium value, we could potentially
unwind the trade when the spread deviates in the other direction. This
would reduce the trading frequency on average by a factor of two. Given
that stocks have a bid-ask spread, we would incur a trading slippage every
time a trade is executed. Reducing the trading frequency reduces the effect
of this slippage.

Let us therefore consider the strategy where the trades are put on and
unwound on a deviation of A on either direction from the long-run equilib-
rium . We buy the portfolio (long A and short B) when the time series is A
below the mean and sell the portfolio (sell A and buy B) when the time se-
ries is A above the mean in 7 time steps.

log(p;') - v log(p?) = - A (5.8)
log(P{i,-) -y log(PtBﬂ«) =p+A
The profit on the trade is the incremental change in the spread, 2A.

Example

The Data
Consider two stocks A and B that are cointegrated with the following data:

Cointegration Ratio = 1.5

Delta used for trade signal = 0.045
Bid price of A at time ¢ = $19.50
Ask price of B at time ¢t = $7.46
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Ask price of A at time ¢ + i = $20.10

Bid price of B at time ¢t + i = $7.17

Average bid-ask spread for A = .0005 percent (5 basis points)
Average bid-ask spread for B = .0010 percent ( 10 basis points)

The Strategy
We first examine if trading is feasible given the average bid-ask spreads.

Average trading slippage = ( 0.0005 + 1.5 x 0.0010)
=.002 ( 20 basis points)

This is smaller than the delta value of 0.045. Trading is therefore feasible.
At time ¢, buy shares of A and short shares of B in the ratio 1:1.5.

Spread at time ¢ = log (19.50) — 1.5 x log (7.46)
=-0.045

At time ¢ + i, sell shares of A and buy back shares the shares of B.

Spread at time ¢ + i = log (20.10) — 1.5 x log (7.17)
=0.045

Total return = return on A + ¥ X return on B

= log (20.10) — log(19.50) + 1.5 x (log(7.46) — log(7.17) )
=0.3+1.5x4.0
=.09 (9 percent)

ROAD MAP FOR STRATEGY DESIGN

The discussion so far briefly outlines how we might trade once we know two
stocks are cointegrated. We do concede that the course of the discussion so
far has brought up more questions on the details. How do we identify can-
didate stock pairs? Can we verify that they are indeed cointegrated? How do
we determine the cointegration coefficient? What is the most appropriate
value for delta? We explore the questions and issues involved in the subse-
quent chapters. To that end, we provide a road map for the design and
analysis of the pairs trading strategy.
The steps involved are as follows:

1. Identify stock pairs that could potentially be cointegrated. This process
can be based on the stock fundamentals or alternately on a pure statis-
tical approach based on historical data. Our preferred approach is to
make the stock pair guesses using fundamental information.
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2. Once the potential pairs are identified, we verify the proposed hypoth-
esis that the stock pairs are indeed cointegrated based on statistical evi-
dence from historical data. This involves determining the cointegration
coefficient and examining the spread time series to ensure that it is sta-
tionary and mean reverting.

3. We then examine the cointegrated pairs to determine the delta. A feasi-
ble delta that can be traded on will be substantially greater than the slip-
page encountered due to the bid-ask spreads in the stocks. We also
indicate methods to compute holding periods.

SUMMARY

m Statistical pairs trading is a relative value arbitrage on two securities and
is based on the premise that there is a long-run equilibrium between the
prices of the stocks composing the pair.

m The degree of deviation from the long-run equilibrium is called the
spread and represents the extent of mutual mispricing.

® Any deviation from the long-run equilibrium is compensated for in sub-
sequent movements of the time series.

m Pairs trading involves trading on the oscillations about the equilibrium
value.

m The econometric paradigm of cointegration and error correction is cen-
tral to the analysis of the pairs-trading strategy.

FURTHER READING MATERIAL

Pairs Trading

Gatev, Evan, G., William, N. Goetzmann, and K. Greet Rouwenhorst. Pairs Trading:
Performance of a Relative Value Arbitrage Rule. NBER Working Papers 7032,
National Bureau of Economic Research Inc., 1999.

Cointegration

Engle, Robert F. and C. W. Granger. “Co-integration and Error Correction: Repre-
sentation, Estimation and Testing.” Econometrica 55, no. 2 (March 1987):
251-276.

Stock, James H. and Mark W. Watson. “Testing for Common Trends.” Journal of
the American Statistical Association 83, no. 404 (December 1988): 1097-1107.

Enders, Walter. Applied Econometric Time Series. (New York: John Wiley & Sons,
Inc., 1995).



Pairs Selection in
Equity Markets

INTRODUCTION

In Chapter 5, we explained that strategy design was essentially a three-step
process. The three steps are identification of stock pairs, cointegration test-
ing, and trading rule formulation. In this chapter, we focus on the first of the
three steps, the process of identifying potential stock pairs. In this step we es-
sentially short-list the pairs for cointegration testing and further analysis.
Why do we need to do that? We could just as well work with a candidate list
of all possible pairs, run cointegration tests on all of them, and eliminate
pairs that fail the tests. This certainly seems reasonable, except for the fact
that in a universe of 5,000 stocks, we have a total of about 12 million pairs.
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Running tests on 12 million pairs is definitely not a viable option. Therefore,
the natural inclination is to try to reduce the number.

The most expedient way (not necessarily the best) to accomplish that is
by using heuristics, or rules of thumb. In the heuristics approach, the list of
pairs is explicitly partitioned into two sets: potentially cointegrated and not
potentially cointegrated. This partitioning is accomplished by applying a set
of rules. The rules are designed to exclude pairs with a slim chance of being
cointegrated. This limits the number of pairs in the candidate list and re-
duces the number of cointegration tests that need to be performed. Al-
though this approach seems reasonable, it is best characterized as being ad
hoc. Different people have different belief systems about the market. There-
fore, reasonable people can come up with dramatically different rule sets
based on their personal experiences. This makes the rule sets anecdotal in
nature. Furthermore, it is possible for individuals to hold opposing views.
An aggregation of rules representing the beliefs of multiple individuals may
end up being inconsistent. This is now a case where the whole is lesser than
the sum of its parts and results in missed opportunities. It might therefore
be useful to put some thought into this to come up with a more definitive
methodology.

The methodology we prescribe here is distinctly different from the rules
of thumb or heuristics approach. Instead of attempting to evaluate explicit
partitions, this approach aims to arrive at a relative ordering of the pairs
based on the degree of comovement. Each pair is associated with a score/
distance measure. The higher the score, the greater the degree of comove-
ment, and vice versa. Notably, such a structure lends itself to deductive rea-
soning. If we find that a pair is unsuitable for pairs trading, then we have
good reason to believe that every pair with a score/distance measure worse
than the current pair is also unsuitable. The pair selection process now be-
comes equivalent to choosing a suitable threshold value for the distance
measure. Notice that this approach relies solely on the distance measure for
ordering the pairs. Therefore, a proper choice of the distance measure is key
to the pairs selection process.

Let us quickly examine the properties that would be desirable of the
score/distance measure. First, if the evaluation of the score/distance measure
took as much effort as cointegration testing, then it would defeat the pur-
pose. We may as well test for cointegration directly with all the pairs in the
exhaustive list. Therefore, at the very least, the evaluation of the distance
measure must be relatively easy and straightforward. Additionally, it is de-
sirable that the distance measure not be completely empirical. Empirical de-
ductions rely solely on historical data. This comes with an underlying
assumption that the fundamentals of the firm are essentially static. There are
no changes that impact the valuation of the firm. Needless to say, this need
not be true. Ideally, we would prefer to tie the evaluation of the distance
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measure to the fundamentals of the firm. Accomplishing this would help
provide a theoretical justification for the use of the score/distance measure
and therefore a sound economic rationale for our expectation of cointe-
grated behavior.

In this chapter, we focus on defining, justifying, and interpreting the
score/distance measure. It is therefore a bit theoretical in nature. To help mo-
tivate the choice of the score/distance measure, the nexus between cointe-
gration and arbitrage pricing theory (APT) is explored. We draw parallels
between the common trends model for cointegration and the ideas of APT.
Conditions to be satisfied for cointegration in the common trends model are
translated into APT constructs. This makes it possible to evaluate the
score/distance measure in the APT framework. Moreover, if the multifactor
implementation of APT is composed of fundamental variables, then the dis-
tance measure calculated relates to the fundamentals of the firm. We will
then have an easy evaluation procedure for the distance measure that is
firmly based on the fundamentals of the firm, thus satisfying the require-
ments of the score/distance measure.

In addition, we bridge the gap between theoretical expectations and
practical observations. Assumptions, caveats, and loopholes that are en-
countered in the process are stated explicitly. Insights gained in the exercise
will help us understand what can go wrong and the things to beware of
while trading. Sources of risk are identified and quantified with a view to en-
hance the understanding of the dynamics involved in pairs trading and the
kinds of pairs to avoid. Let us start with the common trends model.

GOMMON TRENDS COINTEGRATION MODEL

Let us recall the common trends model from Chapter 5. We are given two
series v, and z,, as shown in Equation 6.1.

y, =n, +€ (6.1)

2y nzt + gz,

n, andn, _represent the so-called common trends or random walk compo-
nents of the two time series; €, , €, are the stationary and specific compo-
nents of the time series. If the two series are cointegrated, then their common
trends must be identical up to a scalar,

n, =yn, (6.2)

where yis the cointegration coefficient. Let us examine some of the implica-
tions of the common trends model.
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Inference 1: In a cointegrated system with two time series, the innovations
sequences derived from the common trend components must be perfectly
correlated. (Correlation value must be +1 or -1).

Let us denote the innovation sequences derived from the common trends of
the two series as 7, and r. . Recall from Chapter 2 that the innovation se-
quence for a randomm walk is obtained by differencing it. The innovation se-
quences shown here are therefore the result of differencing #,, and 7,
respectively. In equation form, we have

n, —-n,6 =t 6.3
Ye+1 Vi Ye+1 ( )
-n, =71
241 2t 241

According to the common trends model, the common trends must be iden-
tical up to a scalar.

n, =yn, (6.4)

Now, if we require

n =Yn
Yt+1 4 241

it follows from simple algebra on Equations 6.4 and 6.5 that
=, (6.6)

This means that the innovations derived from the common trends must also
be identical up to a scalar. Incidentally, the scalar also happens to be the
cointegration coefficient y. Now, if two variables are identical up to a scalar
(in this case the cointegration coefficient), they must be perfectly correlated.
If the cointegration coefficient is positive, then the correlation value is +1. If
it is negative, then the correlation value is —1.

Thus, in a cointegrated system the innovation sequences derived from
the common trends must be perfectly correlated.

Inference 2: The cointegration coefficient may be obtained by a regression
of the innovation sequences of the common trends against each other.

Based on the preceding discussion we have a linear relationship between the
Innovation sequences given as

n, =T, (6.7)
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It therefore follows that the cointegration coefficient may be obtained by
performing a simple regression of one innovation sequence against the other.
The cointegration coefficient is therefore given as

cov(ry S rz)

var(r) (6.8)

7/:

In this section we looked at conditions necessary for cointegration. We es-
tablished that the innovation sequences derived from the common trend
terms must be perfectly correlated. We urge the reader to take special note
of this fact. The idea resonates throughout the chapter and forms the basis
for the scoring function.

A subtle point to highlight at this juncture is that there are in effect two
correlation measures. One correlation measure pertains to the innovation se-
quences of the common trend alone. This correlation value is either +1 or —1.
Another correlation may be calculated on the innovation sequences of the
whole series, taking into account both the common trend and the stationary
components. This measure can take on a whole range of values depending
on the variance of the stationary components. The two correlation measures
are very different, and it important not to confuse one for the other.

Our next point pertains to the stationarity of the common trend and
specific components of the two time series. As far as common trends go,
there is no restriction on them. They can be stationary or nonstationary, and
this is neither critical nor material for cointegration. The same cannot be
said for the specific components. The definition of the common trends model
relies on their being stationary time series. Therefore, for cointegration
to exist, it is absolutely necessary for the specific components to be station-
ary. By implication, the first difference of the specific component must not
be white noise, because if the differenced series were white noise, then the
specific series would be a random walk, a nonstationary series. This violates
the stationarity condition for the specific component. Therefore, the first dif-
ference of the specific component cannot be white noise.

In summary, there are two conditions that need to be satisfied for coin-
tegration in a common trends model. First, the innovation sequences de-
rived from the common trends of the two series must be identical up to a
scalar. Next, the specific components of the two series must be stationary.
Having now established an understanding of the common trends model,
we turn to the issue of applying this to stock data. Application is possible
only if we separate the time series into nonstationary/common trends and
stationary/specific components. To do that, we look to arbitrage pricing
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theory (APT) and establish a link between APT and the common trends
model. This will be the focus of the discussion in the following section, on
common trends.

GCOMMON TRENDS MODEL AND APT

Earlier, in Chapter 2, the logarithm of stock price was modeled as a random
walk. To accommodate the common trends model, let us modify that a lit-
tle and consider the logarithm of the stock price to be a sum of a random
walk and a stationary series

log(price,) = 1, + €, (6.9)

where 7, is the random walk, and €, is the stationary component. Differenc-
ing the logarithm of stock price yields the sequence of returns. Therefore,
based on Equation 6.9, the return 7, at time ¢ may also be separated into two
parts

log(price,) - log(price,1) = n, — n,y + (€,— £,1) (6.10)

=1+ (6.11)

where 7/ is the return due to the nonstationary trend component, and 7, is
the return due to the stationary component.

Notice that the return due to trend component is the same as the inno-
vation derived from the trend component. Therefore, the cointegration cri-
terion pertaining to the innovations of the common trend may be rephrased
as follows: If two stocks are cointegrated, the returns from their common
trends must be identical up to a scalar. But why in the world should stocks
ever have common returns? Is there a financial rationale for these to exist
among stocks? The answer to that is a resounding yes, and APT comes in
handy in providing a comprehensive explanation for this. Recalling the ear-
lier discussions on APT, stock returns may be separated into common factor
returns (returns based on the exposure of stocks to different risk factors) and
specific returns (returns specific to the stock). If two stocks share the same
risk factor exposure profile, then the common factor returns for both the
stocks must be the same. This provides us with a rationale for when we
might expect stocks to have a common return component.

We are now ready to draw parallels between the common trends model
and APT. According to APT, stock returns for a time period may be sepa-
rated into two types: common factor returns and specific returns. Let these
correspond to the common trend innovation and the first difference of the
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specific component in the common trends model. For the correspondence
to be valid, the integration of the specific returns must be a stationary time
series.

Alternately, as discussed in the previous section, the specific returns
must not be white noise. But APT is a single time frame model and cannot
provide us with any guarantees on the time series of specific returns.
We would therefore have to make that leap of faith and assume that the
specific return series is not white noise. Nevertheless, it is reassuring to
know that the validity of this assumption is tested when running the coin-
tegration tests and pairs where the specific component is nonstationary are
eliminated.

Let us go ahead and make the assumption that the specific return is not
white noise. We can now interpret the inferences from the common trends
model in APT terms. The correlation of the innovation sequence is the com-
mon factor correlation. Also, the cointegration coefficient may be calcu-
lated using APT constructs to evaluate the common factor variance and
covariance in its formula. Let us now formally put all of the preceding dis-
cussions into an observation.

Observation 1: A pair of stocks with the same risk factor exposure profile
satisfies the necessary conditions for cointegration.

Condition 1

Now let us consider two stocks A and B with risk factor exposure vectors yx
and x, respectively. The factor exposure vectors in this case are identical up
to a scalar. We denote the factor exposures as

Stock A: Yx = (}/xla}/xZany)"',yxn)

Stock B: X = (X005 X05X35000s X,;)

Geometrically, it may be interpreted that the factor exposure vectors of the
two stocks point in the same direction; that is, the angle between them is
zero.

If b = (b4,b,,b3,...,b,) is the factor returns vector, and 7,"* and ;" are
the specific returns for stocks A and B, then the returns for the stocks 4 and
rg are given as

— spec
T, = y(xlbl +x,b, + x5+, ..., +bn) +7)

spec

ry = (xlb1 +x,b, + x5+, .., +xnbn) + 15
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The common factor returns for the stocks are therefore

r/if = j/(xlb1 + x,b, + x3b3+,...,+xnbn)
of _
ry = x,b, + x,b, + x3b5+, ..., +x,b,

Thus, 77 = yrd. The innovation sequences of the common trend are identi-
cal up to a scalar. This satisfies the first condition for cointegration as per
the common trends model.

Condition 2
Now consider the linear combination of the returns.

ro= vy = (i =y )+ (e =)

The left-hand side of the equation represents the return of a portfolio long
one share of A and short y shares of B. The right-hand side shows that this
return is separable into common factor returns and specific returns of the
portfolio. Therefore

— spec
rport - rport + rport
where
of — o _ ol
7ﬂport =Ty Y7
spec _ ,spec _ spec
7’port =Ty Y7

Notice that if the stocks A and B are cointegrated, then the common factor
return 77 _ becomes zero.

Ad(fitionally, the return on the long—short portfolio may also be viewed
as the output from differencing the spread time series. Based on the separation
of the return series, the spread series may also be represented as the sum of
two components. One is the integrated common factor return, which we shall
call the common factor spread. The other is the integrated specific return,

which we shall call the specific spread. Writing this in equation form, we have
spread — spread” | = r}fgrr

spread’** — spread,”\" = 10

spread?™ = spreadt‘f + spread,™
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Again notice that if the stocks are cointegrated, then spread? becomes
zero, because r;(':n is zero. Therefore, when the stocks are cointegrated, the
spread of the portfolio is the same as the spread due to the specific
components.

Additionally, the spread series must be stationary for cointegration. This
will be true if the spread due to specific spread is stationary. The specific
spread will be stationary if the integration of the specific returns of the indi-
vidual specific returns of the stocks is stationary. This is indeed the assump-
tion that we make when relating APT with cointegration. Therefore, if this
assumption bears out, we will have satisfied all the necessary conditions for
cointegration.

Summary

The driving idea in the common trends model has been to view a given time
series as a sum of stationary and nonstationary components. The idea of
viewing a time series as a sum of component series for ease of analysis is in
fact a common practice. Notably, in the practical analysis of time series, the
convention is to make an implicit assumption that the series is composed of
trend, seasonal, and stochastic components. Arbitrage pricing theory de-
clares this idea of composition rather explicitly and takes on a construc-
tionist approach to modeling stock returns. Every risk factor in the APT
model is associated with a time series of returns. The weighted sum of these
series, with the factor exposures as weights, is the expected returns series for
a stock. To get the actual returns, we need to add the specific return series
to the expected returns.

Two stocks with identical risk factor exposures would therefore have
the same common factor returns. In other words, the common factor return
of a long—short portfolio of the two stocks is zero. The common factor con-
tribution to risk in this case is the least it can ever be, zero. Furthermore, if
the integration of the specific returns of the stocks is stationary, then the two
stocks are cointegrated. Thus, a key area to look for a measure of cointe-
gration is the risk factor exposure profiles of the stocks and how closely
aligned they are.

THE DISTANCE MEASURE

We are now ready to define the distance measure. Recall from the discus-
sions on the common trends model that the necessary condition for cointe-
gration is that the innovation sequences derived from the common trends
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must be perfectly correlated. We also established that the common factor re-
turn of the APT model might be interpreted as the innovations derived from
the common trends. The correlation between the innovation sequences is
therefore the correlation between the common factor returns. The closer the
absolute value of this measure is to unity, the greater will be the degree of co-
movement. The distance measure we propose is therefore exactly that: the
absolute value of the correlation of the common factor returns.
The formula for the distance measure is therefore given as

cov(rA, rB)

d(A,B) =|p| =
d var{r,) var(r,)

(6.12)

In APT terms, if x, and xj are the factor exposure vectors of the two stocks
A and B, and F is the covariance matrix, the distance measure may be cal-
culated as

‘ xaFxg ‘
‘\/(xAFxB)(xBFxB)

Note that in Equation 6.13 we have used only common factor terms. The
specific variance contribution is not used.

Io| = (6.13)

INTERPRETING THE DISTANGE MEASURE

In previous discussions we hinted that the perfect alignment of the factor
exposure vectors, that is, a zero angle between them, is indicative of co-
integration. In this section we will show that the correlation measure as cal-
culated in Equation 6.13 could actually be interpreted as the cosine of the
angle between transformed versions of the factor exposure vectors corre-
sponding to the two stocks.

But why do we need to transform the factor exposure vectors? Can we
not directly measure the angle between them? We could do that but for the
fact that all factors in the multifactor model are not created equal. Returns
are more sensitive to changes in some factors versus the others. We therefore
need to transform from the space of factor exposure to the space of returns
and then measure the angle between the transformed vectors. We will dis-
cuss the exact nature of this transformation and show that correlation can
indeed be interpreted as the cosine of the angle.
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Calculating the Cosine of the Angle hetween
Two Vectors

It is useful at this point to define the inner product of two vectors. Given two
vectors e, and ey as follows:

e, = (efsefs . ef) (6.14)
ep = (ef,ef,...,ef])
The inner product between the two vectors is given by the formula
ejep = eftel +eftel + .. +efed (6.15)
In matrix notation, the inner product may be represented as e e, where e},

is the transpose of the vector. The length of a vector is the square root of its
inner product. Therefore, we have

length(eA) = e el (6.16)

With the preceding equations, we are now ready to calculate the angle be-
tween two vectors. The steps involved in calculating the angle between two
vectors are as follows.

Step 1. We first evaluate the unit vectors (vectors of length one) pointing
in the direction of the two vectors. We do this by scaling each
element of the vector by its length.

Step 2. The cosine of the angle between the two vectors is now the inner
product of the unit vectors pointing in their directions.

We will leave it to the reader to work out that the two steps
may be condensed into a single formula as given in Equation 6.17.

T
€4%B

et

cosf = (6.17)

Example

Let us say we are required to calculate the cosine of the angle between the
vectors A = (0, 2) and B = (3, 0). Calculating the lengths of these vectors, we
have
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length(A) = V0% + 2% =2
length(B) = 3% + 0% = 3

We now scale each vector by dividing every element in the vector by the
length of the vector. Denoting the unit vectors in small letters, we have

a=(0,1)
b=(1,0)

The cosine of the angle between the vectors is given by the inner product of
the unit vectors.

cosO=ab=01+1.0=0

The value of the cosine is zero, indicating that the angle between the two
vectors is 90 degrees. The two vectors are indeed orthogonal to each other.

Geometric Interpretation

Key to doing the geometric interpretation is the idea of eigenvalue decom-
position of the covariance matrix F. A brief discussion on eigenvalue de-
composition is provided in the appendix. Let the eigenvalue decomposition
of F be given as UDUT. If x, and xj are the factor exposure vectors of the
two stocks, let us consider a transformation of the two vectors as shown in
Equations 6.18.

€y = xAUD1/2 (6.18)
€ = .'X:BIJDI/2

This is the transformation from the factor exposure space to the factor
return space. Now, using simple matrix manipulations it is easy to verify that

length(eA) = \/xAFxX = Jvar(rA) (6.19)
length(eB) = \/xBFxg = Jvar(rB) (6.20)
eAeg = xAFxg = cov(rA,rB) (6.21)

Using Equations 6.19, 6.18, and 6.19, the cosine of the angle between the
vectors e, and eg works out as follows:
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T F T
cos 0 = 2\ = Xa X = (6.22)

\/ length(e A)length(eg) \/ (xAF xg)(xBF e )

cov(rA,rB)
Y B N o

Var(r A) var(rB)

This completes the geometric interpretation.

RECONCILING THEORY AND PRACTICE

So far we have established the basis for the distance measure in theory. We
have shown that the absolute value of the common factor correlation is a
good way to measure the degree of comovement in stock prices. Let us now
examine the practical issues surrounding it. There may be issues and sources
of error that we may not be able to mitigate entirely. However, being aware
of them and the risks they pose can provide insights into what can go wrong
during trading.

Stationarity of Integrated Specific Returns

We discussed earlier that the necessary condition for cointegration is that the
integration of the specific returns time series must be stationary. To verify
this directly means that we must evaluate the common factor and specific re-
turns for each time period. Alternately, this could be verified when per-
forming the cointegration tests.

Cointegration testing involves the estimation of the cointegration coef-
ficient and ensuring that the spread series of the long—short portfolio con-
structed with this ratio is indeed stationary. If the integration of the spread
series is nonstationary, this would show up in the spread series being non-
stationary. Readers can convince themselves of this by examining the obser-
vation made in the section Common Trends Model and APT. Thus, testing
for stationarity of the spread is sufficient to ensure that stationarity of the in-
tegrated specific returns, and the assumption that we make here is verified in
due course.

Deviations from ldeal Conditions

From an APT point of view we established that two stocks will be cointe-
grated if their factor exposure vectors are perfectly aligned. More precisely,
the common factor correlation between them must be +1 or —1. This is a
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rather tall order and is seldom satisfied in practice. Unless the stocks are
class A and class B shares of the same firm, it is unlikely that the stocks’ fac-
tor exposures will be perfectly aligned.

If two stocks do not have their factor exposures perfectly aligned, then
any long—short portfolio composed of the two stocks will have a nonzero
component for the common factor returns. Our model for cointegration re-
lies on a zero value for the common factor returns, and the violation of this
represents deviation from ideal conditions for cointegration. Stating the
above in formula form, we have

r= vy = (i =yl )+ (0 - vy (6.23)
rportf = r;(})(rt + T;(frt (624)

The value of r;(’;l in Equation 6.24 is nonzero. Consequently, following the
logic from the observation in the section Common Trends and APT, the
common factor spread is also a nonzero quantity. It is helpful to write this
in equation form.

spread, = spread” + spread:™* (6.25)

The common factor spread may very well be nonstationary, violating the
cointegration condition of spread stationarity. But can we still make do with
less than perfect conditions of cointegration? How do we quantify the devi-
ation? Let us say that the spread series is composed of a stationary compo-
nent (typically the specific spread) and a nonstationary component (typically
the common factor spread). Let the variances of the two components be
Gsztationary and Gﬁonmmnary,T. Note that the variance of the nonstationary com-
ponent is specified for a time horizon T. Also, let ¢ be the trading horizon. If
the change in the nonstationary component of the spread is small, we could
treat it more or less as a constant and say that we have a cointegrated pair.
A measure of the deviation from cointegration is captured in the signal-to-
noise ratio as given in Equation 6.26.

Gstationar
SNR = — 2200 (6.26)
o

nonstationary,?

The ideal is to have the nonstationary component as close to zero as possi-
ble. If it is exactly zero, then the signal-to-noise ratio would be infinity. In
practice, a very large number for the ratio would make our assumption of
cointegration reasonable. Given that the variance of the nonstationary com-



Pairs Selection in Equity Markets 99

ponent increases linearly with the trading horizon, then, all things being
equal, having a shorter trading horizon is definitely closer to the ideal con-
dition of cointegration. This is of course determined by the dynamics of the
spread and the rate at which the spread oscillates about the mean.

Based on Equation 6.25, the overall spread may also be interpreted as
the specific return spread with a varying mean that is dictated by the com-
mon factor spread. If the common factor spread is a nonstationary time se-
ries, then the overall spread is equal to the specific spread with a stochastic
drift to its mean value. Thus, deviation from ideal cointegration conditions
results in what we shall call mean drift. The fallout from mean drift is that
trading with symmetric bands may not be optimal because the movement of
the spread series may be skewed. The worse part is that it could skew either
way depending on the movement of the common factor spread, and it is not
possible to know in advance. Also, if the common factor spread is nonsta-
tionary, then the variance of the skew scales linearly with time. An impor-
tant insight to be gleaned in the process is that the mere passage of time
represents an increase in risk in pairs trading and must be taken into account
to design time-based stop orders.

Model Error

Model error occurs when our model specification is way off the mark. Let
us say that there is dramatic news that could potentially result in a drastic
change in fundamentals of a firm. The market immediately begins the
process of adjustment to the news, predicting in some sense where the fac-
tor exposures of the firm would be under the new circumstances.

In such cases where the expectation is for a dramatic change in the fac-
tor exposure, the common factor correlation evaluated before becomes
dated, and the correlation structure between the two stocks breaks down. It
is important to be aware of this and be constantly on the lookout for such
events when trading pairs.

Numerical Example

Consider three stocks A, B, and C with factor exposures in a two factor
model as follows:

xp=[1 1]
xp=[0.75 1]
xc=[1 0.75]

Let the factor covariance matrix F =
.0225 .1024

0625 .0225]
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Step 1: Calculate the common factor variance and covariance.

v =11 0625 .0225[1] _ 000
0225 .1024 1

(sqrt(.2099) is the volatility, 45.8%

var(B) = .75 1] 0625 .022500.751 _ 5, (volatility of 41.3%)
0225 1024 1

var(C) = [1 .75]['0625 ‘0225][1}.1539 (volatility of 39.2%)

0225 .1024].75
cov(A,B) = [1 1].0625 02251175 _ | 0es
0225 .1024 1
cov(A,C) =1 1]'0625 02250 105
0225 1024 .75

Step 2: Calculate the correlation (absolute value of correlation is the distance
measure).

corr(A, B) = COV(A’ B) = 0.1887 = 0.9957
Jvar(A)var(B) 12099 x 171
cor(4,C) - cov(4,C) 0.1787 09431

\/var(A) var(C) 2099 x 171539

If we have to choose one pair for purposes of trading, based on the distance
measure, our choice would therefore be the pair (A, B).

Step 3: Calculate the cointegration coefficient. A detailed discussion on the
reasoning for the formula is provided in the next chapter.

_ cov(AB) .1887

A = = =1.1032
AB " var(B) 171

_ cov(AC) _ 1787

- = =1.1613
AC T var(C) 1539

Step 4: Calculate the residual common factor exposure in the paired port-
folio. This is the exposure that causes mean drift.
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expap=[1 1]-1.1032x[0.75 1]=[1726 -.1032]
expac=[1 1]-1.1613x[1 .75]=[-.1613 .129]

Step 5. Calculate the common factor portfolio variance/variance of residual
exposure.

var(rh) = [1726 - .1032] 06250225 ) 1726 1 _ 554
0225 1024 | -.1032
o, = .0021 = .046
var(rl ) = [-1613  129] 062502250 = 16131 _ 5 4
0225 1024 .129

o9, =+.0024 = .049

Step 6. Calculate the specific variance of the portfolio.

To simplify our illustration, let us assume the specific variance for all of the
stocks to be 0.0016.

spec | __ spec 2 spec
Val'(f’AB ) = Val‘(VA )+ ’}/AB VaI‘(TB )

=.0016 + 1.10322 x .0016 = .0035

o3 = .00035 = .059

spec | __ spec 2 spec
Var(rAC ) = Var(rA )+ }/AC Var(rc )

=.0016 + 1.16132%x.0016 = .0037

o3 =+.0037 = .061

Step 7. Calculate the SNR ratio with white noise assumptions for residual
stock return.

spec
SNR,, = Zan =09 _ 45y
AP o 046
Oup -
spec
SNR,, = Zac = 001 _y 545

ol 049
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Therefore, even on a signal-to-noise ratio basis the stock pair (A B) does bet-
ter than stock pair (A C). Notice that having a high value for the specific
risk/variance (provided it is stationary) is highly desirable as it improves the
SNR. A higher specific variance means higher stock volatility, indicating that
a high volatility environment is conducive for pairs trading.

SUMMARY

m The candidate list of potentially cointegrated stock pairs can be com-
piled by the process of identifying similar stocks.

® The notion of similarity is formalized using a distance measure between
two stocks.

m The distance measure is based on an APT model possibly with funda-
mental risk factors.

® The candidate list of pairs is determined by choosing pairs with distance
values within a certain threshold.

m The distance measure is the absolute value of the common factor corre-
lation between the two stocks.

m If the common factor correlation is +1 or —1 and the integration of the
specific return series of the stocks involved are stationary, then condi-
tions for cointegration are satisfied.

m It may be possible to trade pairs of stocks even though they deviate from
ideal conditions of cointegration.

m The signal-to-noise ratio as defined is a measure of the deviation from
the ideal condition of cointegration.
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APPENDIX: EIGENVALUE DECOMPOSITION

Consider a scalar A and a corresponding vector v. They are an eigenvalue,
eigenvector pair of a square matrix A if they satisfy the equation

Av =Av

The equation means that the vector v is special with respect to the matrix A.
Multiplying the vector with the matrix does not change the direction or ori-
entation of the vector. Its magnitude, however, is multiplied by the scalar A.
A square 7 X n matrix may have #n eigenvalues A,,A,,...,A, and 7 correspon-
ding eigenvectors vy,v5,...,0,,

Therefore
Al/l = )«11/1
AZ/2 = AUZ
Av, = v,

Let us write this in matrix form. We construct a diagonal matrix D with the
eigenvalues forming the diagonal and a matrix U with each column corre-
sponding to an eigenvectors. Then

AU =UD
or
A =UDU™!

Note that we now have the matrix A in terms of its eigenvalues and eigen-
vectors. This is the eigenvalue decomposition of A. The covariance matrix F
has special properties, and in that case

Ut=UT
and
F = UDUT
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Testing For Tradahility

INTRODUCTION

In Chapter 6 we discussed the process of choosing potential stock pairs. In
this chapter we will focus on whether the identified candidate pairs are ac-
tually tradable. Based on the discussions so far, we can state that a pair is
tradable if the stocks making up the pair are cointegrated. We need to bear
in mind, however, that in most cases we are dealing with systems that are not
exactly cointegrated. As a matter of fact, in the course of examining the can-
didate pairs, we can almost always expect to have a residual factor exposure
causing the phenomenon of mean drift, thereby resulting in the signal to be
nonstationary. However, if the signal-to-noise ratio is good enough, then for
all practical purposes we could treat the residual series as stationary for the
time period of the trade. Based on the preceding observations we could refine
the phrasing of our question as follows: How do we decide that a pair is
tradable even though it deviates from ideal conditions of cointegration? To
seek out an approach to answer that, we could draw on the insights gleaned
from cointegration testing procedures. With that in mind, let us outline the
process of verifying that two stocks are indeed cointegrated.

Most verification processes are based on the “If it walks like a duck and
quacks like a duck, it must be a duck” philosophy. Needless to add, the ap-
proach to cointegration testing is also along the same lines. We identify the
properties that must be satisfied if cointegration were indeed true and check
to see if the properties hold. If they do, then the stock pair in question is de-
clared cointegrated. Let us therefore review some properties of cointegrated
systems that could be potentially of use in the testing process.

We start off with the Stock-Watson characterization of cointegrated
systems. Each individual stock series is modeled as a sum of a trend compo-
nent and a stationary component. The property characteristic of cointe-
grated systems is that the trend components of the two stocks must be the
same. If the trend component is the same and the stationary component just
oscillates about some value, then there must be a strong correlation between
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the two stock series (not to be confused with the correlation between the
first differences or returns of the series). A strong correlation is usually evi-
denced by a good fit in the regression of one time series against the other.
Additionally, a good fit is characterized by a strong # statistic and r-squared
measure. Therefore, deducing from the preceding information, we could
look for a good value for the ¢ statistic and the r-squared measure from the
regression of the two time series, infer a strong correlation between the two
series, and declare the existence of a common trend. This sounds logical,
does it not? However, it is not true. Let us see why that is.

Upon careful examination of the preceding argument, it can be seen that
it is actually incomplete. The argument would be complete if we could assert
that the good fit upon regression or strong correlation property is a trait ex-
clusive to cointegrated systems. Only if that were true could we conclude
that evidence of the property implies cointegration. Unfortunately for us, the
good fit on regression property is not exclusive to cointegrated systems. As
a matter of fact and rather surprisingly, completely independent random
walks when regressed against each other can also result in a high r-squared
measure. This rather counterintuitive phenomenon was reported in the find-
ings of a simulation experiment conducted by Granger and Newbold, who
aptly coined the phrase “spurious regression” to describe it. Thus, as evi-
denced by spurious regression, the strong correlation property is not exclu-
sive to cointegrated systems and therefore cannot be used as a definitive test
for cointegration.

We now turn to another property of cointegrated systems. This is the
existence of a linear combination of two time series that is stationary and
mean reverting. That property is in fact a defining property of cointegration
systems. We could therefore design a cointegration test based on the verifi-
cation of this property. Such a test for cointegration was first prescribed by
Engle and Granger. The rationale behind the test proceeds somewhat like
this: If two time series are cointegrated, then a simple regression of one time
series against the other should produce a good estimate of the linear rela-
tionship. Also, the spread series resulting from the linear relationship, that
is, the residual series from the regression, must be stationary. Therefore, to
test for cointegration all we need to do is estimate the linear relationship be-
tween the two series given using simple regression and test for stationarity of
the residuals. If the residuals form a stationary time series, then we have a
cointegrated pair. Thus, cointegration testing is a two-step process: '

1. Determination of the linear relationship.
2. Stationarity testing on the residuals.

IThere is a one-step test for cointegration originally proposed by Johannsen, which
I do not discuss here. However, references for it are in the appendix.
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We now go back to our original question. Knowing that we are dealing
with systems that are not exactly cointegrated, how do we adapt the cointe-
gration test to test for tradability? With regard to the first step, there is not
much of a change because in any case we would want to know the linear re-
lationship between the two stocks. The difference, however, is in the second
step. Contrary to the strict requirement of stationarity of the residual series
for cointegration, the pair is deemed tradable as long as the residual exhibits
a sufficient degree of mean reversion. I will seek to quantify this idea of
mean reversion and show how the results may be used to directly verify
whether a stock pair is tradable or not. Thus, similar to the cointegration
testing, testing for tradability is also a two-step process: estimation of the lin-
ear relationship and measuring the degree of mean reversion. We will discuss
these two steps in detail in the following section, on the linear relationship.
Let us start with the estimation of the linear relationship.

THE LINEAR RELATIONSHIP

The linear relationship between the two time series is given as
log(ptA) -y log(pf) =u+e, (7.1)

In Equation 7.1, the left-hand side of the equation represents a linear com-
bination of the two time series; y in the equation is the cointegration coeffi-
cient. The right-hand side of the equation therefore represents the residual
series and is expressed as the sum of two components: i is the equilibrium
value, and e, is a time series with zero mean, which may be construed as the
disturbance term in the equilibrium. If the series were mean reverting, then
we would expect its value to oscillate about the equilibrium value. Owing to
this, the linear relationship between the two series is also termed the equi-
librium relationship, characterized by the two values y and p. It is therefore
important to remind ourselves of the economic interpretation of these two
values.

The interpretation of y as the common factor beta between the two
stocks was already discussed in Chapter 6. We are now left with the inter-
pretation of . To do that, let us consider a portfolio long one share of stock
A and short y shares of stock B. The y shares of B represents a position in
terms of stock B that is equivalent to one share of A. Now, according to the
equilibrium relationship, such a portfolio yields an average cash flow of u,
which is given back when the position is reversed. Thus u represents the pre-
mium paid for holding stock A over an equivalent position of stock B. But
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do such premiums exist in real life? As a matter of fact, stocks do trade at a
premium for a variety of reasons. Greater relative liquidity (liquidity pre-
mium), the possibility of the firm being a takeover target (takeover pre-
mium), and pure charisma on the part of some stocks are some reasons that
come to mind. Therefore, in the evaluation of the equilibrium relationship
care must be taken to estimate both the values y the cointegration coefficient
and u the premium.

We will discuss two approaches to estimating the equilibrium relation-
ship. The first approach is based on the multifactor framework. The second
approach is the regression approach. Let us begin with the multifactor
approach.

ESTIMATING THE LINEAR RELATIONSHIP:
THE MULTIFACTOR APPROACH

In Chapter 6 we mentioned that the cointegration coefficient could be esti-
mated by performing a regression of the common factor returns of one stock
against the other. The estimated value from the regression is the cointegra-
tion coefficient. Also, the formula for the regression coefficient can be ex-
pressed in terms of the covariance and variance of the stocks involved. Now,
exploiting the multifactor framework the variance and covariance may be
expressed in terms of the factor exposures and the factor covariance matrix.
Thus, the regression formula may be expressed completely in terms of the
constructs of the multifactor framework and may be used to evaluate the
cointegration coefficient.

It is important to note here that we have two values for the cointegra-
tion coefficient depending on the choice of the independent variable. If the
linear relationship is expressed assuming stock B to be the independent vari-
able, we have

res, = log(p;‘) -y log(ptB) (7.2)

cov(rA,rB) B eATFeB

TT
Var(rB) eyFeg

Y =Pap = (7.3)

Alternately, if the equilibrium relationship is represented assuming stock A
to be the independent variable, we have

res, = log(pf) -y’ log(ptA), (7.4)
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cov(rA,rB) B EEFEA

T
var(rA) e Fe,

Y = Bga = (7.5)

We now have two relationships and two values for the cointegration coeffi-
cient, bringing us to the question of which value to use in our tests. We sug-
gest going with the larger of the two. From a purely numerical viewpoint in
terms of reducing precision errors, we are better off estimating the larger of
the two numbers. This choice has some additional implications. To see that,
let us suppose that our choice was y (stock B is the independent variable) be-
cause ¥ > v, then it follows from the formulas that Var(rB) < Var(rA). Thus,
by choosing the larger of the two values for the cointegration coefficient, we
are by implication designating the stock with lower volatility as the inde-
pendent variable.

Once the value of the cointegration coefficient is determined, we can
very easily evaluate the residual time series. From the earlier discussion on
the linear relationship, the equilibrium value u is the mean value of the
residual time series. If this is significantly different from zero, we have a
nonzero equilibrium value. Otherwise, we could assume that it is zero. To
summarize, the steps involved in estimating the equilibrium relationship are
as follows:

—_

. Calculate the two values y and y” using multifactor model constructs.

2. Determine which value must be used for the cointegration coefficient.
Our choice is guided by the larger of the two values yand y’.

3. Construct the time series corresponding to the appropriate linear com-

bination and evaluate its mean. If it is significant, we have a nonzero

equilibrium value; otherwise, it is zero.

ESTIMATING THE LINEAR RELATIONSHIP:
THE REGRESSION APPROACH

The linear relationship may also be estimated using a regression approach.
The use of regression to estimate the linear relationship is based on the
premise that if two series are cointegrated, then a simple regression of one
time series against the other should give us the cointegration coefficient and
the value of the premium. The slope of the regression line is the cointegra-
tion coefficient, and the intercept is the premium.

The attractiveness of the regression approach is that the general method-
ology of regression is well known and has found ready application in innu-
merable situations. Implementations of the ordinary least squares approach
is part of most software packages and may be readily used on the prepared
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data set. In fact, it has often been argued that the simplicity of the regression
process is probably its most powerful feature. Then why do we even attempt
to discuss it at length? Well, it is also true that although the general idea of
regression is relatively simple, the simplicity of the process lends itself to
hasty application without much thought. Thus, ironically, the pervasiveness
and simplicity of the regression approach is the reason to discuss aspects of
the regression approach in some detail.

Proper use of regression is possible only if we thoroughly understand the
standard regression scenario and the deviations of our situation from the
standard. Let us therefore examine the standard regression scenario as ap-
plied to physical systems. Central to physical systems is the study of cause
and effect; that is, the response of the system to a particular stimulus. If the
expectation is that the response is proportional to the stimulus, the process
of linear regression comes in very handy in measuring this constant of pro-
portionality. The typical experiment involves subjecting the system to a se-
ries of inputs or a stimulus in a specified range and measuring the response
of the system to those inputs. The input—output pairs then form the data set
on which the regression is run. The independent variable in this case is the
input or stimulus, and the slope of the regression is the constant of propor-
tionality connecting the stimulus to the response.

Let us now highlight some aspects of the experimental process. Note
that in this case, since the experimenter is the one administering the stimu-
lus to the system, he or she can design it to be accurate with a very small
magnitude of error. We can therefore assume that there is no error in the
input data. However, the output data come from the response of the system
and may not be known accurately due to imperfect experimental conditions.
Also, if the experimental conditions do not change dramatically during the
course of the trials, we may assume that the error manifest in each observa-
tion of the response is drawn from a common probability distribution. Thus,
here is a situation where the input is known relatively accurately, and the
source of error is only in the output with an error standard deviation that is
constant across all observations.

Now let us see how stock price data relates to the scenario described
above. First, it may be argued that the price of a stock is known exactly.
Then where is the source of error? Note that we use just one representative
value for the price in a given time period, while in actuality the price changes
constantly within the period itself. Therefore, a reasonable case may be
made for the existence of uncertainty or error associated with our choice for
the price in the time period. Next, in our situation, there is no distinct sep-
aration of cause and effect. The prices of the two stocks may very well be
feeding off each other, as discussed in the error correction model for cointe-
gration in Chapter 5. Since it is not possible to easily separate cause from ef-
fect in this scenario, and both of the price values are read as outputs, we are
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now faced with a situation where there could be uncertainty or error in
both variables. This is vastly different from the standard linear regression
case, which assumes errors only in one variable.

Also mentioned earlier, each stock moves constantly, reaching its own
highs and lows within a time period, with the high and low price character-
izing the range of price movement. Although we allow ourselves to choose
only one representative price for a given time period for each stock within
this range, we also admit that there is a certain amount of uncertainty asso-
ciated with our choice. But data points in each time period are chosen from
the price ranges of different magnitudes. Under such circumstances, it would
be rather facetious to assume a constant probability distribution for the un-
certainty or errors that are intricately linked to the magnitude of the price
range in a given period. We can strongly assert that our situation is one
where the uncertainty associated with each data point is different. This is
also different from the standard regression scenario of constant variance in
the observations.

Therefore, to sum up, we have a situation where there is error associated
with both observations, and the variance of the observation error is also a
varying quantity. Although the differences of our situation with the standard
regression scenario are substantial, they are by no means novel. Such situa-
tions have been encountered in a variety of other applications and may be
applied to ours without change. Going that route, however, adds to the com-
plexity of the process. We will briefly discuss the solution approach in this
case to highlight the issues and proceed to suggest a much simpler approach.

The situation of nonconstant error distributions coupled with errors in
both variables can be handled by minimizing the chi-squared merit function,
given as

1 A\ _ 1 B) _ 2
xz(w)=§,[og(p’) y log(pf) - u] -

A 2 B
& e+ 77 vae?)

In Equation 7.6, Var(stA) and Var(silzl‘ are the variances of the error in the
observations log(ptA) and log(piB ) e errors are assumed to have a zero
mean and may be calibrated based on the range of movement of the stock
within each time period. Note that for our purposes it is not important to
have an absolute measure of the variance of the errors, just that the values
be proportional to the actual variances.

To further understand how the chi-squared function handles the situa-
tion of nonconstant error distributions, let us examine it in a little bit of de-
tail. The value in the numerator of the merit function is the squared error in
the regression. If the variance as shown in the denominator was a constant,
then the minimization boils down to minimizing the sum of squared errors,
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which is the ordinary least squares procedure. The denominator term, in
fact, weights each data point in the cost function to be inversely propor-
tional to the variance of the individual error terms. Thus, it may also be
thought of as the sum of squared errors each normalized by its variance.
This approach to regression using the chi-squared merit function is some-
times also called the weighted least squares approach.

However, typical applications adopting a weighted least squares ap-
proach assume the error only in the response variable and not in both.
Specifically, those applications do not have the term with y? in the denomi-
nator. The presence of this term in the denominator complicates the mini-
mization of the chi-squared function, in that the derivative of the
chi-squared function with respect to yis now nonlinear, and so we may need
to resort to numerical methods to solve this. In summary, the regression
process can get fairly involved if we are to account for the varying error
probability distributions in the measurement with errors in measurement for
both the variables.

Nevertheless, if there is a way to construct a price series such that the er-
rors associated with the observation in each time period may be assumed to
be the same, then we can do away with these complications, work with just
ordinary least squares, and arrive at a reasonable answer. Let us see if we
might be able to do that.

Note that in the previous paragraph we mentioned that we choose only
one representative price for a given time period from the range of stock
price movement for that period. In a typical scenario where the length of a
period is one trading day, the standard convention in the construction of
daily time series is to use the closing price at the end of the trading day; that
is, the latest price in the process of serial price adjustment. Let us call this
method for recording the price time series the close-close method. Time se-
ries of this type are usually constructed to perform a mark to market of stock
inventory. Given the nature of the auction process and the price discovery
mechanism, this is definitely a reasonable choice. But is this approach to
data construction appropriate for our purposes? It is seductive by habit to
use the same construction regardless of purpose even though such an exer-
cise may be ill-advised. Care must be taken to ensure that the process of data
construction is a reflection of the specific purpose at hand.

Our purpose is to examine the price relationship between two stocks. In
this quest, to examine price relationships, more important than the closing
price in a given time period is the answer to the question, “At what price in
the time period was the liquidity a maximum?” That would be the consen-
sus price in the time chunk at which the most buyers and sellers agreed that
the price was right and a lot of shares changed hands. Therefore, conclusions
drawn on the maximum liquidity price series of two stocks would be more
reliable than using the close-close approach. A reasonable proxy for the
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maximum liquidity price is the volume weighted average price, commonly
termed as the VWAP price. We could therefore construct our time series
with VWARP prices.

By choosing the VWAP price we are arguably within reason to assume
that the error distributions of the VWAP price from the maximum liquidity
price is about the same regardless of the magnitude of the price range. We
can therefore resort to the simple ordinary least squares version in our re-
gression analysis. Of course, the manner in which the calculation of standard
error forming the basis for the 7 statistics tests would still need alteration. In
our scenario of cointegration or tradability testing, the emphasis on the ¢ sta-
tistic is rather low, and therefore we contend that this is something we can
live with. Additionally, note that using the VWAP price has the tendency to
temper extreme values and therefore has the added benefit of minimizing
the effect of outliers on the regressions. In conclusion, the time series con-
structed with the VWAP price is better suited to understand equilibrium re-
lationships and should be the preferred approach.

However, this does not do away with the need to decide which of the
two price series we should use for the independent variable. We will avoid
being repetitive and just say that the same idea as was adopted in the multi-
factor model case may be applied here, also.

TESTING RESIDUAL FOR TRADABILITY

Subsequent to estimating the equilibrium relationship we need to construct
the residual time series. Although we advocated using VWAP prices to esti-
mate the equilibrium relationship, we recommend constructing the residual
time series by applying the equilibrium relationship to the time series of
stocks constructed using the close-close method. If the two series are indeed
cointegrated, constructing such a time series provides us with a fairly good
picture of the oscillations about the equilibrium value.

We begin by reviewing the ideal situation. In an ideal situation for trad-
ability, the two stocks would be cointegrated, and the residual series would
be stationary. It is therefore desirable that the properties of the residual se-
ries exhibit the characteristics of stationary series. One of the properties of
stationary series, the property of mean reversion, is of particular importance
to us. This is relevant because pairs trading is a bet that the residual series
will revert to its mean or equilibrium value. In other words, deviations from
the mean are quickly corrected by the series moving back toward the mean.
It would therefore be nice if we could quantify the degree of mean reversion
of a given time series.

It turns out that highly mean-reverting series are also characterized by a
high frequency of zero-crossings. A zero-crossing is defined as the transition
of the time series across its long-run mean. The frequency of zero-crossing is
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then the number of times we can expect the time series to cross its equilib-
rium value in unit time. Thus, the zero-crossing frequency provides us with
a quantitative characterization for the mean reversion property.

Notice that if the zero-crossing rate is very high, then the time to revert
to mean is short, implying that the time we need to hold the paired position
is small. The signal-to-noise ratio is bound to be good, and we could be
more comfortable with the idea that the pair is tradable. Thus, a high zero-
crossing rate for the residual series is a preferred trait and directly appeals to
our requirements.

A high zero-crossing rate is also indicative of a stationary series. To
strengthen this conviction, we make an observation in contrast by consider-
ing the example of Brownian motion a nonstationary series. Even though the
distribution of Brownian motion is symmetric about the mean, the zero-
crossing event is very infrequent. The theoretical explanation for the phe-
nomenon is well captured by the famous arcsine law for Brownian motion
discovered by P. Levy. The law provides us with information on the last pas-
sage time, or the last time that the Brownian motion visited zero. More pre-
cisely, let us consider a Brownian motion starting at zero, or time ¢ = 0 and
stopped at time T. If g is the last time when zero is visited, then the proba-
bility distribution satisfies

P(g < u) = %arcsin\/% (7.7)

The density function corresponding to this is given as

1 1
P(M) = ;M(T—_M) (7.8)

A quick plot of the density graph in Figure 7.1 shows that we expect the zero
crossing to have occurred with high probability only at the extremes of the
time interval. Thus, we would expect very few zero crossings for Brownian
motion a nonstationary time series.

For a stationary ARMA time series with known parameters, the theo-
retical zero-crossing rate may be calculated using the formula developed by
Rice. The Rice formula is the sum of a series of zero-crossing probabilities
at various time steps. The probability at each lag is calculated using the auto-
correlation function. Thus, if the residual series is stationary and the ARMA
parameters are known, we can apply Rice’s formula to obtain the zero-
crossing rate. Note that this requires us to estimate the ARMA parameters
with the assumption that the series is actually stationary. This is something
we wish to avoid. We favor a model free approach and will focus on that to
obtain an estimate of the zero-crossing rate. Therefore, even though it would
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FIGURE 7.1 Density Plot of ArcSin Distribution.

be a worthwhile endeavor, we do not discuss Rice’s formula in detail. Inter-
ested readers can find more specifics on this in the references at the end of
the chapter.

As mentioned earlier, our focus remains on the estimation of the zero
crossing rate directly from the given data sample. Obviously, the most direct
approach would be to count the number of zero crossings of the residual se-
ries and calculate the zero-crossing rate by dividing the number of crossings
by the total time. However, given that we are doing this with a sample size
of 1, the result is likely to be strongly biased to the residual series at hand.
The dilemma facing us is that we have only one realization of the residual se-
ries. The general idea of averaging across many sample residual series to rid
ourselves of the bias is not possible.

To resolve this, we resort to a resampling technique popularly known as
the bootstrap. In the bootstrap, however, we look to estimate the distribu-
tion of the time between two crossings; that is, the reciprocal of the cross-
ing rate. Note that the time between zero crossings is directly related to the
time that we expect to hold the paired position. Thus, the test for tradabil-
ity also leads us to an estimate of the holding period, which can be used as a
benchmark for time-based stops. The time between two crossings relates di-
rectly to the trading horizon and is therefore of direct relevance for trading.
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The process works as follows:

1. First, we get the sample small size population of time between crossings
by counting the time between subsequent crossings in the residual series.

2. A probability distribution is then constructed by resampling repeatedly
from the existing sample. The large sample obtained as a result of the re-
sampling exercise is then used to construct the probability distribution.

3. Percentile levels may then be constructed for the population. We can
then check to see if the rates at the desired percentile levels on either side
of the median satisfy our trading requirements. If they do, then we de-
clare the pair tradable and vice versa.

Example

We now illustrate with an example the application of the process just de-
scribed. For illustrative purposes, we carefully picked two stocks from the
semiconductor sector and sampled their prices as of the day’s close for 90
days. Although we advocate the use of VWAP prices to do the regression, for
sake of expediency we ran an ordinary least squares method on it two times,
changing the independent variable. Results from the regression for the larger
of the two y values are as follows:

Equilibrium value u=-0.6971
Cointegration coefficient y=1.0617

R-squared from the regression is 0.7965

Figure 7.2a is a scatter plot of the log-price series of the two stocks against
each other. Figure 7.2b is the residual time series. A cursory look at the
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FIGURE 7.2B Residual Time Series.

residual time series seems to suggest that it is indeed tradable. We now run
the bootstrap procedure on it and obtain the population. A quick look sug-
gests that in the extreme the time between zero crossings can be as long as
14 to 26 days with a median value of about 5 days. The pair definitely
seems to be in tradable category. However, it might be better to liquidate the
position on reversion to zero instead of waiting for an excursion of magni-
tude in the other direction.

SUMMARY

m Tradability testing is a two-step process consisting of evaluating the lin-
ear relationship and measuring the degree of mean reversion of the
residual.

m The linear relationship between the log-price series of the two stocks is
characterized by the cointegration coefficient and the stock premium.
® They may be estimated in a multifactor framework or by ordinary least

squares regression.

m The spread series can be calculated by applying the linear relationship.

m The degree of mean reversion of a series is quantifiable in terms of the
zero-crossing frequency.

m The zero-crossing frequency can be directly estimated using the boot-
strap procedure.

m The reciprocal of the zero-crossing frequency is indicative of the trading
period, and a pair may be deemed tradable if we are satisfied with the
range of trade periods or zero crossing frequencies generated by the
bootstrap.
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Trading Design

INTRODUCTION

In the discussions so far, we have established that a key requirement for
pairs trading is the existence of an equilibrium relationship between the log
price series of two stocks. We also discussed that the equilibrium relationship
is characterized by two quantities: the cointegration coefficient and the equi-
librium value. Once they are known, they can be used to construct the lin-
ear combination of the log prices of the two stocks, which is referred to as
the spread. Pairs trading is a bet on the mean reversion property of the
spread. When we make the determination that the spread has diverged suf-
ficiently from the equilibrium value, we enter into an appropriate position in
the two stocks, betting that the divergence will correct itself, and the spread
would revert back to equilibrium. It is therefore important for us to explic-
itly define what would qualify as a sufficient divergence of the spread value
from equilibrium for us to consider entering into a trade. The explicit spec-
ification of the divergence level enables us to boil down the actual trading of
the spread to an unambiguous set of simple rules, which we will also refer
to as trading signals. Obviously, the proper design of trading signals has a
strong bearing on the profit loss picture and is therefore an important topic
for discussion.

Let us look at what we would need in order to design the trading rules.
Well, if the dynamics of the spread are known, then we can design our trad-
ing signals in an appropriate fashion. So, what do we know about the dy-
namics of spreads? For one, we can expect all of them to be highly mean
reverting, since that is the criterion we used to choose the pairs in the first
place. Let us assume for the sake of argument that all spreads are stationary
ARMA processes. ARMA processes are mean reverting in nature and there-
fore do not violate the basic requirement we set forth for a pair to be trad-
able. So, now it is clear that the spread can at a minimum be drawn from a
rich repertoire of ARMA processes and can therefore have dynamics that are
wide and varied. We will discuss the different kinds of spread dynamics that
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we may encounter and the ramifications they hold in the process of design-
ing trading signals.

The driving principle in the design of trading rules is the maximization
of profits. The right choices could end up altering the profit picture dramat-
ically. It is therefore important to have a robust approach to the design of
trading rules. Also, as noted earlier, the dynamics of the spread have a wide
and varied repertoire. Under the circumstances, it would seem most appro-
priate if we had different design methods for different classes of spreads,
each method tailored to its class, would it not? However, that need not be
the case. We propose here an approach to the design of trading rules whose
main feature is its one-size-fits-all quality. The methodology may be applied
to all spreads regardless of their dynamics, thus making the approach very
attractive.

The game plan for the following material is to start with a simple
example. We consider a white noise series and design trading rules for it.
This will help to familiarize us with the underlying principles behind the de-
sign process. We follow this by discussing various classes of spread dynam-
ics and the possible ways to model them. We then present our approach for
the determination of trading signals.

BAND DESIGN FOR WHITE NOISE

Let us discuss the design of trading signals when the spread in question can
be modeled as a white noise series. As noted earlier, the general principle in-
volved in trading a spread is to put on a trade upon deviation from the equi-
librium value and unwind the trade when equilibrium is restored. However,
the actual implementation of the general principle could be wide and varied.

On the one hand, we can adhere closely to the general principle put on
a spread position on a deviation of A from the equilibrium value and liqui-
date the position upon mean reversion. On the other hand, we could say that
the spread swings equally in both directions about the equilibrium value and
unwind the trade when it deviates by A in the opposite direction. The argu-
ment for it would be that this reduces the trading frequency by a factor of
two. Given that stocks have a bid-ask spread, we would incur a trading slip-
page every time a trade is executed. Reducing the trading frequency reduces
the effect of this slippage. The argument against it would be that this reduces
the trading frequency by a factor of two and increases the holding period in
the trade. This of course exposes us to mean drift, which was discussed in
earlier chapters and may not be well suited to trade spreads with a lower
quality of signal-to-noise ratio.

Another point to take into consideration in the trading process is the
amount of inventory we are willing to hold on a spread. On one end of the
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spectrum, we could observe the spread at regular time intervals and put on
a position whenever we spot a deviation, regardless of the current holdings
in inventory relying on the statistics of the spread series to control our in-
ventory. On the other extreme, we could limit our exposure to one spread
unit;! that is, if we currently have one unit of spread in inventory, then even
if we observe a deviation in the same direction, we do not add on to our po-
sition. However, if the spread deviates in the opposite direction, we close out
our current position and enter into a new spread position in the opposite di-
rection of our original holdings. Practical trading is probably somewhere be-
tween the two extremes.

Given the different trading styles, it would be natural to require that
trading rule design be tailored to the specifics of each trading style. Fortu-
nately for us, though, the specifics of the trading style do not matter in the
determination of A to maximize profits. To see that more clearly, let us now
walk through the process of determining the value of A when the spread is a
Gaussian white noise series.

The Gaussian white noise series is a series of drawings from a Gaussian
distribution. We buy one unit of the spread whenever we observe that the
spread has a value less than or equal to —A. Similarly, we sell one unit of the
spread when we observe a value greater than or equal to A. The probability
that a white noise process at any time instant deviates by an amount greater
than or equal to A (A being positive) is determined by the integral of the
Gaussian process, which is 1-N(A). Therefore, in T time steps we can expect
to have T(l -N (A)) instances greater than A. Similarly, the probability of
the value being less than or equal to —A is given by N(-A). Now, owing to the
symmetry of the Gaussian process N(-A) = 1 — N(A) and therefore the num-
ber of instances, we expect the value of the spread to be less than or equal
to —Ais also T(1-N(A). Thus, in a time span of T units we can expect to have
bought and sold the spread on an average of T&l - N (A)) times. The profit
on each buy and sell is 2A. A measure of profitability for trading in the
time period T is therefore (profit per trade X number of trades); that is,
2TA(1 - N (A)),2 Also, note that even if we were to liquidate our positions at
equilibrium value, the measure of profitability would remain the same.

Now the problem of band design boils down to determining the value of
A that maximizes A(l - N (A)). Figures 8.1a and b are plots of such a func-
tion. On the x-axis is the value of A as measured in terms of the standard de-
viation of the normal density about the mean. The y-axis is a plot of the

A unit of spread is determined by the average volume per trade in the two stocks and
the ratio between them.

2Note that this is not the actual percentage profit as measured in conventional terms.
If we do assume that we have relatively deep pockets and wish to maximize the dol-
lar yield, then the measure as described here is appropriate.
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function value. Note that the maximum occurs at 0.750. This would be the
value that maximizes the profit.

Let us now consider the case where we restrict the inventory held at any
time to one spread unit. The spread unit for our purposes is a fixed quantity
of shares for the two stocks in the appropriate ratio as defined by the coin-
tegration coefficient. Naturally, this quantity is dictated by the average trade
volume of the two stocks comprising the pair.

When the spread value is more than delta and we are long one unit of
spread, we sell two spread units: one to unwind the long spread position and
another to have short position on the spread. The results of the analysis as
already described still hold in this case. To check that this is true, we ran a
simulation using 5,000 white noise realizations and calculated the profits for
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ON GUIDELINES AND DEADLINES

different values of A, assuming that we trade exactly in the manner de-
scribed. The plot of the profit against different values of A is shown is Fig-
ure 8.1b. Note that it is identical to the curve in Figure 8.1a. We can
therefore safely conclude that the inventory constraints do not matter in the
process of deciding the value of A.

Now that we understand the principles underlying the design process,
it would be a good time to discuss its limitations as well. Note that there is
an implicit assumption that the stocks would be uniformly liquid at all lev-
els of divergence of the spread from equilibrium. This, of course, is far
from reality. It may be that due to liquidity issues the value of delta at
which the spread may be put on in size could be lesser than the one sug-
gested by this approach. That would then be the true delta at which the
profits are maximized.

This leads us to our next peeve about this approach. It says nothing at
all about position size. It seems as though we could keep adding on to a pairs
position and make unlimited profit when the spread converges. Needless to
say, it would be naive to believe that would be the case. To see why, consider
the following. By engaging in pairs trading, we are contributing to the mar-
ket forces that cause the convergence of the spread. We need to make sure
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that at no point in time the spread position size gets to a point where we be-
come the dominant force contributing to the convergence. If that happens,
then it becomes difficult to unwind the position without a substantial slip-
page. Any gains we make in the spread will be lost in the slippage. It is there-
fore important to recognize that there is a physical limit to which we could
increase the size of the pairs position, even though the design process says
nothing in that regard.

So, what do we make of the design process when it does not handle
these issues? A good way to look at the results of the design process is that
in the absence of any information whatsoever and having to deal with mak-
ing decisions in a vacuum, the results of design process serve as a strong
guideline to aid in the process of designing trading rules. We now move on
to some reflections on spread dynamics.

SPREAD DYNAMICS

The purpose of this section is to demonstrate that the modeling of the spread
in parametric terms could indeed get complex. To get an idea of the plausi-
ble range of models for spread dynamics, we will engage in a series of what
we shall call “Thought Experiments.”? We will look at some empirical ob-
servations and the implications they bear for us when attempting to model
spread dynamics. We will start with the simplest case of Gaussian white
noise and reason our way toward more complicated models.

Case 1: Mixture Gaussian Model

We can expect a white noise time series for the spread to occur when trad-
ing security pairs that have a strict parity relationship. An example of this is
index arbitrage, which involves trading the S&P futures against the index.
But is it reasonable to expect the white noise to be strictly Gaussian? Gauss-
ian white noise would mean the value of the spread at any point in time is
drawn from a fixed Gaussian distribution. But the trading of securities is
more brisk around the open and close. This causes increased volatility
around these times. Hence, it would not be too much of a stretch to expect
the spread series to also exhibit higher volatility around these times. We can
therefore extend the white noise model by asserting that the white noise
spread values are drawn from Gaussian distributions with higher standard
deviations around the market open and close and a relatively low standard
deviation around midday.

3A fine term coined by theoretical physicists in an era where the average physicist was
expected to toil at the laboratory conducting real experiments.
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In addition to that, let us now bring into consideration the empirical ob-
servation of GARCH effects in the volatility of individual stock returns.
GARCH is an acronym for generalized auto-regressive conditional het-
eroskedascity. There is a huge body of literature on it and its ramifications
for options pricing. To describe the phenomenon from a modeling perspec-
tive, let us consider a time series whose value at any point is drawn from a
Gaussian distribution. If the distribution is fixed, we would have Gaussian
white noise. However, we could allow for the variance of the distribution
used at each point in time to vary. In fact, we go even further and prescribe
that the variance of the distribution must follow an ARMA time series. If we
do that, we now have a GARCH process. Although GARCH processes have
been observed and recorded for individual stocks return series and not for
spreads, we assert that it is definitely within the realm of plausibility that
white noise spreads could exhibit the GARCH property.

In any case, to summarize the discussions so far, it seems as though it
would be more realistic to model white noise spreads as values drawn from
normal distributions but with standard deviations that are dependent on
time. The overall distribution of the spread values in this case may be re-
ferred to as a mixture Gaussian distribution.

So, how do we design the trading rules in this case? The solution may
be to resort to multiple threshold levels instead of one to maximize partic-
ipation in the markets at times of both high and low volatility. We would
then need to estimate the component Gaussian distributions and design the
levels for each one of them. An alternate approach would be to do a dy-
namic estimation of the volatility using say Kalman filtering methods and
let the levels vary with time.

Case 2: ARMA Model

Now let us consider the case of a stock that has just experienced a news
event. We can expect the stock to trade in increased volumes with higher
prices leading to higher prices or lower prices leading to lower prices, de-
pending on the nature of the news event. In other words, we could expect
stock prices to exhibit a momentum-like behavior. If this stock were to be
paired up with another stock for pairs trading and the news event was spe-
cific to the particular stock, it would definitely not surprise us to see the mo-
mentum in the stock price series manifest itself as momentum in the spread
series. In other words, we expect to see some correlation between consecu-
tive values of the spread leading to a meaningful autocorrelation function
and therefore an ARMA series for the spread.

So, how do we design our trading rules in this case? The underlying
principles remain the same. Any choice for the threshold level has a profit
per trade associated with it. If we know the rate at which the threshold level
is crossed, we can determine the expected number of trades. The total ex-
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pected profit is then easily calculated by multiplying the number of trades
with the profit per trade. This calculation can be done for different thresh-
old values, and the value that yields the maximum profit is chosen as the
threshold.

The preceding approach necessitates that we know somehow the rate of
crossing of a particular level for an ARMA series. Luckily for us, the prob-
ability or rate of zero crossing or level crossing for an ARMA process may
be calculated using Rice’s formula. Armed with this information, we can
now say that we are ready to handle spreads modeled as ARMA processes.

Case 3: Hidden Markov ARMA Models

Recall that the ARMA series is a linear combination of past white noise re-
alizations. Traditionally, the white noise series used in the construction of
ARMA series are assumed to be Gaussian. But from our earlier discussion
involving securities that enjoy a strict parity relationship, we expected the
spread to be a mixture Gaussian white noise. It is therefore not much of a
stretch to speculate that the underlying white noise series in the ARMA case
to also be a mixture Gaussian white noise series and exhibit GARCH-like
properties.

The most generalized model to cover these cases could be to say that the
underlying white noise series is generated by drawing a sample from a
Gaussian distribution. The Gaussian distribution is at a given time instant,
however, chosen by rolling the dice. Better still, we say that the exact distri-
bution to use is decided by a Markov process. A Markov process is a process
where the set of outcomes of the dice rolling is dependent on the current dis-
tribution. After the distribution is decided, we then use it to draw the white
noise realization. Note that the white noise generation in this case is a two-
step process. The first step decides the distribution to sample from, and the
second step actually draws a sample from the distribution. Models of this
kind have been used in speech processing and are termed hidden Markov
models. The parameters of such models may be evaluated using the popular
Baum-Welch algorithm.

Our model construction process is not done as yet. Once the white noise
process is generated using the mechanism just described, we construct an
ARMA process by taking linear combinations of the past white noise real-
izations at each time step. (Whew!) Note that the modeling process described
in this section is actually a synthesis of the models described in the two ear-
lier sections.

So, how do we decide the threshold values in this case? As a matter of
fact, at this level of complication there are no known methods as of now to
evaluate the zero-crossing or level-crossing rates other than by way of sim-
ulation. One could extract the model parameters from the existing sample
and generate time series data using these parameters. The profit potential of
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a threshold value is then estimated by simulating trades on the generated
data. The profits thus calculated could then be used to determine the opti-
mal value for the threshold.

Commentary

Reflecting on the deliberations so far, it appears that the closer we wish to
model the spread to reality, the more complicated the models get. The com-
putational methods used in these situations in turn get increasingly involved.
It seems that it would be quite a formidable challenge to simplify the ap-
proach, does it not? Then again, it may be that we are not looking at the
problem with the right perspective. Let us therefore restate what we wish to
accomplish.

The purpose of the whole exercise is to come up with a reasonable and
reliable approach to decide the threshold values. So far, the assumption has
been that in order to design the threshold values it is necessary to know the
dynamics of spread behavior intimately and have parametric models (mod-
els where knowledge of a few parameters gives us a complete description of
the dynamics) describing their behavior. That, however, need not be the
case. We would remain happy campers if we could come up with a reason-
able band design without having to worry about modeling the dynamics of
the spread using parametric models. So, for our purposes we resort to non-
parametric methods where we estimate the profit profile function directly
from the sample realization of the spread; that is, the spread series observed
in the recent past. Obviously, it does not require much persuasion to sub-
scribe to the argument that we get more of the proverbial bang for the buck
on adopting the nonparametric approach.

As mentioned earlier, the idea in the nonparametric approach is to esti-
mate the profit function directly from the sample realization of the spread.
This would preclude us from having to use relatively involved computa-
tional schemes to estimate the parameters of the model had we gone the
parametric route. But we have only one sample realization, and so relying
completely on this realization would bias our results too much to this real-
ization. We address this issue of bias and describe a reasonable method for
threshold design in the following section, nonparametric approach.

NONPARAMETRIC APPROACH

One of the key issues that relate to estimating the profit function directly is
the size of the spread sample. The larger the size of the sample the more con-
fident we can be that the sample truly represents all aspects of the behavior
of the spread. The statement above has in it a built-in assumption of ergod-
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icity. Ergodicity has a rigorous mathematical definition and proof, but for
our purposes, it may be simply stated as follows: A large sample size is ef-
fectively equivalent to having multiple realizations of the series of smaller
sample sizes. Therefore, with large sample sizes for the spread, we can be
reasonably confident that the effects of bias to the sample at hand have been
mitigated.

However, a large sample size may be a luxury that we are not afforded.
Recall that the spread dynamics are directly linked to the fundamentals of
the firm and its valuation. These fundamentals are dynamic and continue to
evolve with time. Therefore, the observations of the spread far back in the
past may or may not be of significance, depending on whether the funda-
mentals of the firms involved remained more or less the same. It is therefore
likely that we may find ourselves in a situation where we need to estimate
the profit function from a relatively small sample data set.

We will soon describe the steps to overcome this issue and propose an
approach to evaluate a close approximation to the profit function. To con-
vince the skeptical reader that this approach actually produces reasonable
results, we will apply the approach to the white noise case. We already
know the true functional form of the profit in the white noise case and
therefore the true optimal value for the threshold. The threshold value esti-
mated using this approach can now be compared with the true value, thus
providing us with a validation of the nonparametric approach suggested.

THE PROOF OF THE PUDDING

In the Mark Twain classic A Connecticut Yankee in King Arthur’s
Court, Merlin, the wizard in Arthur’s court claims to have the ability
to foresee things and know the unknown. The Yankee, pragmatic as he
is, challenges Merlin to guess what he (the Yankee) is holding in his
hand. As the Yankee knows what he is holding in his hand, this would
serve as a ready test case to verify Merlin’s claim.

In fact, the idea of the proof of the pudding is in the eating is
standard fare in the area of signal processing to demonstrate the effi-
cacy of an estimation algorithm. A sample data set for which the pa-
rameters are known is submitted to the estimation algorithm. The
performance of the estimation algorithm is measured by how closely
the algorithm guesses the known true value of the desired parameters.
In this case, we apply the approach to the white noise case. The value
obtained from the estimation can be compared with the true value to
provide us some evidence of the efficacy of the approach.
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We now begin the description of our approach. Note that we could
choose a threshold level anywhere in the continuous range from zero to any
large positive number. As a first order of business, we reduce the continuum
of choices to a finite set of discrete choices for the threshold level. This is be-
cause from a trading perspective, discretization of the levels makes a lot of
sense. To convince ourselves of that, let us consider the situation where we
calculate the observed spread using the last traded price in both the securi-
ties. Even though the spread is calculated that way, we can typically expect
to buy a security on the bid price and sell the other on the offered price. The
implication is that we may have to be willing to give up the bid-ask spread
in both the stocks when putting on the spread. This is called slippage in the
process of trading. Now let us consider two candidate threshold levels that
are spaced very close to each other. Note that if the spacing between them is
less than slippage costs, then as far as trading goes, the two levels are virtu-
ally indistinguishable. Therefore, it does make sense to have the candidate
threshold levels apart by at least the estimated slippage on trading.

Having established the candidate threshold levels that extend symmet-
rically above and below the mean value of the spread series, we are now
ready to start the process. We begin with a simple count of the number of
times the spread exceeds a particular threshold. When the threshold is above
the mean, this is the number of times the spread is greater than the thresh-
old. Similarly, when the threshold is below mean, it is the number of times
it is the number of times the spread value is below the threshold. This count-
ing method mimics the trading style where we put on a spread position
whenever we observe that the threshold has been exceeded and liquidate the
position when we hit the mean value. If we go with the assumption that the
spread moves are symmetric about its long run mean value, we can margin-
ally improve the estimate and reduce the bias by averaging the frequency
count for the positive and negative values for the same absolute value for the
threshold.

This count for each threshold level can then be multiplied by the profit
value corresponding to the threshold level to obtain the raw profit function.
Given that this data is from a small sample set, we can expect this to be
noisy. Figure 8.2a is the plot of the probability estimates from a simple
count of the number of level crossings. The underlying spread series is a
white noise sample with 75 data points. Figure 8.2b is the plot of the profit
made for trading the spread at a particular threshold, which is equal to the
threshold value itself. Figure 8.2b is therefore a straight line with slope 1.
The raw profit profile is a product of the two values for a given threshold.

Figure 8.3 is a plot of the raw profit profile for the white noise sample
with 75 data points, as shown. One can see how noisy and jagged the curve
is. If the raw curve were to be used as is, it could be rather confusing to arrive
at any meaningful conclusion on where exactly the thresholds must be placed.
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Let us now attempt to explain the reason why we obtain such a noisy es-
timate for the profit profile. Note that we have a fine level of discretization
that is coupled with a small sample size. This has led to a step function form
for the count function, which in reality is expected to be monotonically de-
creasing. Also, notice that whenever we hit a step, the profit profile kinks
upward. We shall term this the discretization effect. To obtain a frequency
count that is monotonically decreasing, we would need to correct for this
discretization effect. We can correct for the discretization effect and ensure
a monotonically decreasing function by performing a simple linear interpo-
lation between the points constituting the two levels in the step function. To
show what we mean, look at Figure 8.4.

After this adjustment, even though the count is monotonically decreas-
ing, it is still not smooth. The solution we propose to overcome this is widely
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known as regularization. The following section contains an in-depth de-
scription of the regularization process. Upon completion of the regular-
ization process, the resulting count function may be used to calculate the
profit profile and the maximum value read off as the optimal threshold
value to use.

REGULARIZATION

Let us restate the problem for sake of clarity. We are attempting to estimate
the frequency function for level crossing given a sample realization. Such
problems involving the estimation of functions given data fall under the
general subject area of inverse problem theory. Regularization is one of the
most basic ideas of this theory. The fundamental idea in regularization is
that of two cost measures. The first cost measure quantifies the degree of
agreement of the computed function to the given data. The second cost
measure quantifies the deviation from a known property of the function like
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smoothness. In the process of evaluating the function given data, it is very
likely that the two cost measures are somewhat at odds with each other. If
we decide to fit the functional form very closely to the data, then we may
have to give some slack on the degree of smoothness of the data. However,
if we adhere strongly to the notion that the function is smooth, we may have
to sacrifice on the agreement of the function to the data. The choice of the
function therefore involves a delicate balancing act between the two cost
measures. Note that the previously mentioned idea can also be couched in
terms of the classic and ubiquitous notion in statistics of the compromise be-
tween goodness of fit and bias. If the reader is thinking that the idea has a
familiar ring to it, it is probably because we visited this notion before in
Chapter 2 (and you can be sure that you will read of this again in the book).

Depending on the nature of the second cost measure that relates to the
property of the function being estimated, regularization is referred to by
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many different names. Methods that use a log-like function for the cost
measure are popularly called maximum entropy methods, or MEM methods
for short. If the cost measure is the sum of the squared difference between
adjacent points in the estimated function, then it is called Tikhonov-Miller
regularization.

So, the question now turns to what kind of regularization we should use
in our case; that is, what property of the function should we try to capture
in the regularizing cost measure? In addition to being monotonically de-
creasing, the other property that we can expect from the function is that it
is smooth. We could therefore use the Tikhonov-Miller regularization to en-
sure smoothness of the resulting estimate. We now describe the Tikhonov-
Miller process.

We are given data points (x1,y] ), (xz,yz), (x3,y3), ...,(xn,yn). The x;
series in the data set refer to the threshold values, and the y; series are the
counts corresponding to them. If this data set is representative of the actual
function, then we should use the values of y as is in the final function. How-
ever, the data are from a single sample set and therefore contain the peculi-
arities unique to this sample, leading to a step function form for the counts.
We expect the curve to be a smooth monotonic decreasing function. As
mentioned earlier, we introduce a penalty term for the roughness of the
curve. This penalty term is the sum of squared differences between adjacent
points of the estimated function. The cost function to minimize is now a
weighted sum of the two cost measures as shown next.

Let z4,25,23,...,2, represent the estimated function for the points
X1,X2,X3, - - + ,X,, correspondingly. The cost function with the two terms is then

cost = (3’1 - z1)z + (yz - zz)z +..+ (yn - zn)z +

A[(zl - zz)2 + (z2 - 23)2 +...+ (zn_1 - zn)2:|

It is easy to recognize that the first part is a least-squared cost measure, and
the second part is the penalty for roughness of the curve. Note that this cost
measure is multiplied by a term A. This is the trade-off factor, and it a meas-
ure of how much of a fit error we are willing to allow for reducing the
smoothness cost by one unit. The problem of Tikhonov-Miller regulariza-
tion is to minimize this function with an appropriate value of A. Note that
the choice of A is crucial, as it determines the trade-off between smoothness
and fit error and, in turn, the final shape of the function. So, how do we de-
termine the correct value for A and the resulting regularized function? We
will describe the process by way of example.

Let us consider a simulated white noise sample that we generated. We
design the threshold values and do a basic count of the number of times the

(8.1)



Trading Design 133

spread exceeds the thresholds. The count is this example is represented as a
fraction, which is obtained by dividing it by the total number of sample
points. Then we construct the cost function corresponding to these counts.
Strictly speaking, a constrained minimization would need to be performed
on the cost function by anchoring the count fraction at zero to be at the
value 0.5. This is to recognize the assumption of symmetry of the spread
about its mean; that is, the total count fractions above and below the mean
are likely to be at 0.5. However, we will do just the unconstrained version
here.

The cost function just shown is then minimized using various values of
A to obtain estimates of the count fraction function. A plot of the fit error
against values of A in a log scale is shown in Figure 8.5. Note that the fit
error remains relatively constant, close to zero for small values of A. For
these small values of A, the fit error dominates the cost function. After a par-
ticular threshold value, further increases in A are accompanied by fit error in-
creases. Let us call this threshold value the heel of the curve. This is the point
after which the regularization cost measure takes control. Increases in A lead

12
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k7]
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-6 -4 -2 0 2 4 6
Log (A)

FIGURE 8.5 Lamda Plot.
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to a deterioration of fit in favor of increased smoothness. Then again, past
another value of A, the fit error becomes insensitive to the A value. At this
point the function is more or less a straight line at the mean of all the points
(since this is the line that would lead to the lowest cost for the smoothing
function.

Our choice for A is right at the heel of the curve. If we move A to the left
of the point, then the fit error dominates the cost function. Moving to the
right of the point results in the smoothing term dominating the cost func-
tion. Choosing the value of A to be at the heel of the curve achieves a fine
balance between the two cost measures and is the value that we choose.

The function values for this value of A are evaluated and plotted in Fig-
ure 8.6. The profit profile is then computed from the regularized curve and
is as shown in Figure 8.7. The maximum is now easily read off from this
graph and determines where we place the threshold for our trading signal.
The maximum occurs at 0.75 times the standard deviation, which is also the
theoretical value, thus validating our approach.
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! —— Regularized Curve

0.4 \

0.3 -
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FIGURE 8.6 Regularized Plot of Counts.
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FIGURE 8.7 Profit Profile Estimation.
TYING UP LOOSE ENDS

In this section we highlight some issues of importance that were not covered
in the earlier discussions.

Multiple Thresholds Design

As mentioned earlier, the need for multiple threshold design arises when the
spread is generated using a mixture density white noise process. We could do
this by segmenting the time series sample based on periods or time of day.
The thresholds are then estimated for each sample. Subsequently, they are
checked to see if the difference between the values corresponding to the data
sets is significant. If it is, then we have multiple thresholds. Otherwise, we
stick to the single threshold approach. Note that in the case of multiple
thresholds there are inventory limits to be decided at each level, and the
problem is far from being solved in a conclusive manner.

An approach to circumvent multiple threshold design is to do the
threshold estimation in a dynamic fashion. The levels to apply currently are
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determined based on the data in the immediate past. The process could be
repeated at regular time intervals and the spread levels determined on a con-
tinuous basis.

Sharpe Ratio Calculations

We will desist from calculating the Sharpe ratio for a single pair because the
portfolio of pairs traded determines in a great way the eventual Sharpe ratio.

Time-Based Stops

As noted in Chapter 6, the mere passage of time adds to the risk of holding
an unconverged spread. This is because of the residual common factor ex-
posure resulting in the phenomenon of mean drift. With the passage of time,
the SNR ratio deteriorates. We therefore need to calibrate the SNR ratio at
which we would end up unwinding the position regardless of convergence.

In some cases it may be worthwhile looking at unwinding at the mean
value or zero spread instead of waiting for the spread to swing to the oppo-
site direction.

SUMMARY

® When trading the spread, it is desirable to trade at threshold levels that
yield the maximum profits.

m A large threshold value trades infrequently for a large profit, and a small
threshold value trades frequently for a small profit.

m The optimal value for the threshold is between the extremes.

® Finding the optimal value for the threshold is easier done using non-
parametric methods rather than parametric methods.

m The profit function to be maximized can be constructed from sample
data using a two-step process of ensuring monotonicity of the crossover
distribution followed by Tikhonov-Miller regularization.

m The abcissa for the maximum value of the profit function is the desired
threshold value.

FURTHER READING MATERIAL

Hidden Markov Models

MacDonald, Iain L., W. Zuchinni and W. Zucchii. Hidden Markov and other Mod-
els for Discrete Valued Time Series. (Boca Raton, Florida: CRC Press, 1997).

Ergodic Theory

Walters, Peter. An Introduction to Ergodic Theory. (New York: Springer Verlag,
2000).
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Risk Arbitrage Mechanics

INTRODUCTION

Risk arbitrage in its general connotation relates to trading around corporate
events that alter the capital structure of a firm. Note that we have introduced
two terms, capital structure and corporate events. Let us briefly describe
what they mean, starting with capital structure. When a business wants to
raise initial capital to finance its operation, it can generally do it two ways.
One way is to borrow money from lenders and pay interest on the borrowed
capital. This approach is also called issuing bonds or issuing debt. The other
approach is to promise a percentage ownership in the business commensu-
rate with the fraction of capital invested. This is known as issuing equity. A
firm may choose to go entirely one route or alternately issue equity for some
portion of the capital and issue debt for the remainder. The percentage of
debt and equity that comprise the firm’s capital is termed capital structure.
It is important to note that the study of capital structure and its impact on
firm value is a vast subject area in itself. However, for our purpose, the sim-
plistic definition will suffice. We now move on to Corporate event. A cor-
porate event may be described as an action undertaken by a company that
affects its shareholders and/or bondholders. Typical corporate events could
be paying of dividends, stock splits, tender offers, mergers, exchange offers,
spinoffs, and recapitalizations. Of these events, the paying of dividends and
stock splits do not affect capital structure. The others, however, could po-
tentially alter the capital structure of the firm. So, in the context of risk ar-
bitrage we are interested only in those.

Let us briefly describe each of the corporate events of interest. Recapi-
talizations are situations in which companies deliberately decide to alter
their capital structure. The current shareholders or bondholders would re-
ceive securities or a combination of cash and new securities in exchange for
their shares. Spinoffs occur when a firm splits its business into separate
units. Current shareholders receive new shares in the spun-off entity in ad-
dition to the current shares owned by them. A tender offer is a situation that

139
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occurs when a company decides to acquire another company. Shareholders
of the acquired company receive cash in exchange for their shares. In ex-
change offers and mergers, shareholders of the acquired company receive
shares in the acquiring company in exchange for their shares. Sometimes, in
the case of mergers and tender offers, the acquired company shares are ex-
changed for a combination of cash and shares. In all of these situations the
commonality lies in the fact that they involve an exchange of one security for
another on a scheduled date in the future. Trading on the price disparity be-
tween the two exchanged securities is termed risk arbitrage.

How does pairs trading figure in all of this? The answer is quite straight-
forward. Of the two securities involved in the exchange, we buy the lower-
priced security, sell the higher-priced security, and lock in the price
difference for our profit. Note that this is possible only when both the secu-
rities in question are traded currently in the open market. In the case of re-
capitalizations and spinoffs, one side of the exchanged securities is issued
afresh and cannot be traded before issue. Keeping with the theme of pairs
trading, we therefore focus on mergers and exchange offers.!

HISTORY

Risk arbitrage in America is more than 100 years old. In the 1890s, there
was a five-year depression and about one quarter of the railroad industry
faced bankruptcy and was reorganized. In the reorganization, old debt was
exchanged for new debt plus equity consisting of both preferred and com-
mon stock. The new securities often represented more value than the old
ones. As a result, arbitrageurs could buy the debt and sell the new securities
after a time for a profit.

Another occasion conducive for the practice of risk arbitrage was when
the large processing industry trusts were converted to corporations. Trusts
were vehicles for interstate commercial activity when holding companies
were not permitted by state law. Subsequently, the New Jersey Holding
Company Act permitted the trusts to be reorganized. In these reorganiza-
tions, arbitrageurs could buy trust certificates in the market and exchange
them for new preferred and common stock that the market bid at a pre-

'Quite a large percentage of risk arbitrage practitioners focus primarily on mergers
and acquisitions. Some of the practitioners trading around recapitalizations and
bankruptcies call their practice distressed security investing, or, more colorfully, as
vulture investing. It is also true that the two differ significantly in their method of se-
curity analysis, not to mention the even greater difference in the legal aspects sur-
rounding them. We are thus here in this murky area of nomenclature, and what
exactly falls under the umbrella of risk arbitrage could be debated.
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mium. For Bernard Baruch and other players of the day, this presented a
good arbitrage opportunity.

America experienced its first merger boom in the early 1900s. Shares of
one company could be exchanged for shares of another for the first time.
There were plenty of deals. Subsequent merger booms occurred in the 1920s,
1960s, 1980s, and late 1990s. Risk arbitrage was practiced in some form or
another during these periods with the arbitrageurs acting as market makers
for investors.

The practice of risk arbitrage in its modern form probably started a lit-
tle after World War II. In the early days, it was done by an exclusive club of
stock traders. Some of the individuals in the group were Gustave Levy, later
senior partner at Goldman Sachs; Salim Lewis of Bear Stearns; Harry Cohn
of L.F. Rothschild; Joseph Gruss of Gruss & Coj; and Eugene Wyser-Pratt of
Bache. The group was secretive about their trading methods, and the prac-
tice was shrouded in mystery. The trading was, however, based on publicly
available information.

Then, in the mid 1980s Ivan Boesky wrote a book? on risk arbitrage,
and a lot of the details on the practice of risk arbitrage came to be known
publicly. Later, when the SEC charged him with insider trading offenses, the
practice of risk arbitrage took a big hit. It took a while for the erroneous per-
ceptions to come to terms with the fact that risk arbitrage can indeed be
practiced based on information gathered from public sources. Since then, the
business has rebounded and competition in the marketplace has steadily in-
creased. There are now quite a few mutual funds and hedge funds specializ-
ing in risk arbitrage.

THE DEAL PROCESS

One of the crucial components in the practice of risk arbitrage is the under-
standing of the deal process. Any discussion on the subject matter without
talking about the deal process would be incomplete. Let us therefore briefly
outline various steps involved in a deal. The term deal is used generically to
refer to both mergers or exchange offers. In the ensuing discussion we will
highlight both the similarities and the differences between them.

The typical chain of events leading to a merger is as follows. First, the
two companies do their due diligence on each other’s business and sift
through the nitty-gritty. The attorneys for both the companies then draft a
contract known as a definitive agreement. The two companies then make
the announcement through a joint press release. In some instances, the

2. F. Boesky, Merger Mania-Arbitrage: Wall Street’s Best Kept Money Making Se-
cret. New York: Holt, Rinehart and Winston, 1985.



142 RISK ARBITRAGE PAIRS

announcement is made prior to the drafting of the definitive agreement. In
such cases, the announcement would be construed as an agreement in prin-
ciple. Subsequently, a registration statement is filed with the Securities and
Exchange Commission (SEC). The SEC looks at the statement in the context
of various legal statutes causing rounds of amendments based on its com-
ments. Subsequently, the registration statement is declared “effective,” and
the document is mailed to the shareholders for their approval. The share-
holders vote then takes place and is followed by deal closing.

An exchange offer is somewhat of a hybrid between a merger and a ten-
der offer. It is an unsolicited bid like in the case of a tender offer. However,
unlike the tender offer, the bid is made in terms of the acquirer’s stock as op-
posed to cash. Thus, in this aspect, it is similar to mergers. The formal ex-
change offer is made though advertisements in the Wall Street Journal and
local newspapers. Since this involves the issuance of new stock, it goes
through the same registration process with the SEC as is required for merg-
ers. In this case, however, the completion of the transaction does not require
a shareholders’ vote.

Also note that mergers and exchange offers both have quite a bit in com-
mon with regards to their transaction terms. This is the topic of discussion
in the next section on transaction terms and unless specifically mentioned,
our discussions apply to both of them.

TRANSACTION TERMS

Transaction terms, in the case of mergers, are usually contained in the proxy
statement that is part of the merger agreement document. In the case of an
exchange offer, the transaction terms are available in the exchange offer
advertisement.

It is useful at this point to specify the convention used in the ensuing dis-
cussion. The two companies involved in the transaction will be referred to as
the bidder (B) and target (T). In all of our references involving exchange of
shares, the convention we will follow is as follows. The shares of the target
firm are given up and exchanged for shares of the bidder firm. With that, we
are now ready to discuss transaction terms.

The valuation of the target firm during the due diligence process is typ-
ically in dollar terms, leading to a specific dollar amount for the target stock.
While this dollar amount may be agreeable to both the parties involved in
a transaction, note that it is a little hard to pay the exact specific dollar
amount. This is because the payment for the target stock is made in terms of
the bidder stock, and the price of the bidder stock varies on a day-to-day
basis. Therefore, the key challenge in structuring the transaction is in find-
ing an approach to pay a specific dollar amount for the target stock that is
equitable to both the bidder and target companies.
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The preceding description of the merger process may seem cut and
dried. Nothing, however, could be further from the truth. The due
diligence is intense, and negotiations are complex. To get an idea of the
extremes to which the process can play out, we strongly suggest read-
ing “Barbarians at the Gate: The Fall of RJR Nabisco,”? a narrative on
the RJR Nabisco leveraged buyout.

As for the arbitrageur, the process is fraught with uncertainty (in
some cases more than the others). Antitrust issues, actions of other po-
tential bidders, second thoughts on part of the principals involved, fi-
nancing problems, defensive merger tactics (poison pills), problems
during the shareholder voting process, a general collapse of the over-
all market, and reaction of market participants to merger announce-
ment (the laundry list goes on) are all issues that the arbitrageur needs
to consider while placing the bet. In fact, the practice of risk arbitrage
could require one to be a renaissance man, knowledgeable in analyz-
ing financial statements, well versed in legal procedures, and be a
trader, all at the same time.

3Brian Burrough and John Helyar, “Barbarians at the Gate: The Fall of RJR
Nabisco.” HarperCollins (Jan. 1991).
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The role of the transaction terms in a deal is to mitigate some of the vari-
ability of the price of the bidder stock and try to achieve the objective of
paying a specific dollar amount for the target stock. We now list typical
transaction terms that one is likely to encounter.

Fixed Ratio Stock Exchange

The simplest form of a merger transaction is the stock for stock transaction.
Shares of the target are exchanged for shares of the bidder in a fixed ex-
change ratio. This exchange ratio is determined by the accountants and an-
alysts of the merging companies based on the valuation of the target firm. It
is, however, self-evident that in such fixed exchanges the price paid for the
target varies with the stock price of the bidder.

Fixed Value Stock Exchange

The fixed value stock exchange may be considered an attempt to do a bet-
ter job at mitigating the variability. The transaction structure also helps to
prevent excessive shorting of the bidder stock on the eve of deal announce-
ments. In such transactions, the dollar value of the target stock is fixed. The
exchange ratio is then determined based on the stock price of the bidder dur-
ing what is known as the pricing period. A commonly used approach is to
use the average closing price of the bidder stock in the pricing period to de-
termine the exchange ratio. For example, if the price of the target stock is
fixed at $10 and the average of the closing prices of the bidder stock during
the pricing period is $20, then the exchange ratio is 0.5; that is, two shares
of the target stock is good for one share of the bidder stock. Sometimes, to
prevent manipulation of the closing price by arbitrageurs, the volume
weighted average price during the pricing period is used to determine the
ratio. Thus, in the fixed value approach, the exchange ratio is gradually re-
vealed as the prices unfold over the pricing period.

Although, on a rare occasion, the average of the closing prices on a pre-
determined number of randomly chosen days in the pricing period has also
been used to determine the exchange ratio, the typical approach is to use
some sort of average. The length of a typical pricing period is 20 trading
days or less. The length is fixed more or less to mitigate the effects of volatil-
ity on the bidder stock. Although this approach works slightly better than
the fixed ratio approach, it is still subject to some extent on the volatility of
the bidder stock.

Stock and Cash Exchange

The effect of bidder stock volatility on the exchange ratio may be further
mitigated by paying for the target stock with a combination of cash and se-
curities. Generally speaking, though, the exchange ratio in this case could be
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determined using either the fixed ratio or the fixed value method. We illus-
trate the transaction terms with an example.

Bidder B pays for target T, 70 percent in stock, 30 percent in cash. The
share exchange ratio is 0.5; that is, 1/2 a share of B for one share of T. Cash
amount paid for the remaining 30 percent is $20. Based on the preceding
specification, let us now compute the exchange on a per target stock basis.

35
$6.0

Share amount: share percentage x ratio = 0.7 x 0.5

Cash amount: cash percentage X cash value = 0.3 x $20

Thus, for each share of the target the holder of record would receive 0.35
share of the bidder and $6 in cash.

Note that while these sets of transaction terms reduce the dependence of
the exchange ratio on the price of the bidder stock, paying partly in cash re-
duces the amount of equity issued and has an effect on the capital structure
of the new entity.

Collars

An explicit attempt to reduce the dependence of the exchange ratio to the
volatility of the bidder stock without resorting to cash payments can be seen
in the case of collars. Collars are transaction terms that are contingent on the
price of the bidder. They come primarily in two flavors, the fixed exchange
collar and the fixed value collar.

In a fixed exchange collar, a constant exchange ratio is specified over a
range of the Bidder’s stock price. This ratio is subject to adjustment; that is,
to a maximum or minimum value if the bidder’s stock price falls out of the
range. In a fixed value collar, a constant dollar value is set for each share of
the target stock. The ratio is then determined using the pricing period ap-
proach. However, the terms would be adjusted to a maximum or minimum
exchange ratio if the bidder’s stock price falls out of the range.

Also included in some cases is a walk away right, which grants the tar-
get company an option to terminate the deal in case the price of the bidder
falls below a specified level. In other cases, the bidder is also granted a ter-
mination option if the stock price of the target experiences a very steep in-
crease after announcement.

THE DEAL SPREAD

The transaction terms in a merger or exchange offer create a strict parity re-
lationship between the bidder and target stocks. Violations of this parity
relationship can be measured based on the stock prices of both the stocks
and is called the spread. To see how the spread is calculated, consider the
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fact that each target share is exchanged for a fixed number of bidder shares
or bidder shares plus cash, the value of which we shall call the exchange
value of a target share. This can be calculated exactly with the knowledge
of the transaction terms and the current price of the bidder stock. Let us say
that we also know the current price of the target stock. The spread is now
given as

Spread = exchange value of a target share — current price of target share

The magnitude of the spread is indicative of the disparity and is therefore rep-
resentative of the profit potential in dollar terms on a per-target share basis.

Prior to the date of deal completion, the target shares almost always
trade at a discount to their exchange value. This implies that the value of the
spread as calculated above is usually positive. Let us see why that is. If the
spread were negative—that is, the exchange value of a target share is less
than the current price of the target share—then there is not much reason to
hold the target stock. One could sell the target stock right away and make
more money than waiting until deal close. If the spread is zero, then also it
makes no sense to wait until deal completion date, as it is better to cash in
right now than wait till deal completion to get the same amount of money.
In either of the cases, market participants would begin to sell the target
stock until the value of the spread is no longer negative or zero. Thus, one
can expect the spread to be positive.

It is also useful at this point to remind ourselves that there is the risk of
deal break. Now, it is natural for market participants to expect a greater re-
ward for greater deal break risk and a lesser reward for taking moderate
risks. This is also reflected in the spread with large spreads, implying high
risk and vice versa. Thus, the spread is indicative not only of the return but
also the perceived risk of deal break. Naturally, it is a key market variable
that the risk arbitrageur relates to.

As an illustration, let us look at a real-life merger between Intel Corpo-
ration (INTC) and Level Communications (LEVL). The deal was announced
on March 4, 1999. INTC was the bidder, and LEVL was the target. The ex-
change ratio was 0.86; that is, every share of LEVL was exchanged for 0.86
share of INTC. The deal was completed on August 10, 1999.

Figure 9.1a is a plot of the prices of LEVL and INTC. The price of INTC
is adjusted for the exchange ratio. The first set of points in Figure 9.1a is the
closing price a day prior to the announcement of the merger. We can see that
LEVL registers a big jump in price on the day of the announcement, nar-
rowing the spread to about $4.26 on a close-to-close basis. In fact, it is com-
mon on the day of announcement to see bidder shares fall in price and target
shares rise. As the day of deal completion approaches, the uncertainty in the
deal decreases, the spread narrows and approaches zero. This can be seen in
Figure 9.1b.



Risk Arbitrage Mechanics 147

70
60
50
40 A
30 - —— INTC (adjust close)
——— LEVL (close)
20 T T T T T T T
0 20 40 60 80 100 120
FIGURE 9.1R  Price Dynamics (INTC-LEVL).
5
4
3
=
3
5 2
w
1
X iy

0 20 40 60 80 100 120

FIGURE 9.1B  Spread (INTC-LEVL).

So, how do we go about trading on this disparity? This is indeed the
topic for the next section, Trading Strategy.

TRADING STRATEGY

An arbitrageur may take on a position any time during the course of the
merger process. This would, however, be dictated by the risk and return
characteristics of the deal. The typical trade executed is to short the bidder
shares (sell high), buy the target shares (buy low), and pocket the spread.
When the deal is completed, the target shares owned are exchanged for bid-
der shares. These bidder shares are then applied to cover the short position.
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Alternately, when it is close to deal completion (the spread is usually close
to zero) the position is reversed; that is, cover short position on bidder shares
and sell target shares.

In the example of INTC and LEVL, trade would be to short 0.86 share
of INTC against every share of LEVL that we buy. This is done on the day
of deal announcement. We would thus pocket about $4.26. When the deal
is complete, the positions are reversed. This could be done in one of two
ways. One way to do it is to exchange the target shares for the bidder shares
and use those to close out the short position on the bidder. Alternately, we
could unwind both the positions individually; that is, we sell the shares of
LEVL and cover the short position on INTC. Given that the spread value
around deal completion is typically zero, we can expect the proceeds from
the sale of one share of LEVL would be equal to the price of 0.86 shares of
INTC. These proceeds are now used to buy the shares of INTC to cover the
short position. Thus, for every share of LEVL we were long, we would have
pocketed about $4.26.

The following list is an example of a typical rate of return calculation
for a deal.

Example

Deal Details
The spread on the deal is calculated as follows:

spread = price of B x 0.35 + 6.0 — price of T

Announcement Terms: 1/2 a share of B to be exchanged for every
share of T, that is, ratio = 0.5.
Dividends: No dividends will be paid by B or T
Current stock prices: price(B) = $20.0, price(T) = $8.0
Spread: 0.5 x price(B) — price(T) = (0.5 x 20.0) — 8.0
=$2.0

Estimated Time to Close: 3 — 6 months. (average = 135 days)
The Strategy

1. Purchase two shares of T ($16.0)

2. Sell Short one share of B $20.0

3. Lose Dividend on B,

receive dividend on T, net $ 0.0

4. Rebate on short position $ 0.21

5. Net proceeds (2 + 3 + 4) $20.21

6. Gross Profit (5 - 1) $ 4.21

7. Return = 4.21/16.0 x 165/360 12.05 %
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This return is usually compared with 2 x 90 day treasury bill rate as the
benchmark to determine if the trade is viable. Note that the return calcula-
tion here is slightly different from the return calculation used in the statisti-
cal arbitrage case. The return is calculated on the dollars invested in the long
position alone. This is more to adhere to conventions followed in practice.

QUANTITATIVE ASPECTS

In the following chapters, we focus on some quantitative aspects of risk arbi-
trage. The focus will be in the areas of trade execution and risk measurement.

When trading spreads in size, it is not possible to trade the entire quan-
tity in one go due to liquidity constraints. The position is therefore filled on
an incremental basis. Note, however, that the trades need to be executed in
what we shall call a paired transaction. We need to ensure that both legs of
the pair be filled in a manner so as to satisfy the ratio constraint and also in
the process manage to capture a spread that is greater than a specified value.
We shall discuss issues relating to the unambiguous specification and verifi-
cation of such trades.

We will then address executions in the fixed value exchange case. In the
fixed value exchange transaction, we noted earlier, the exchange ratio is re-
vealed gradually as the prices unfold during the pricing period. The exact ex-
change ratio is known only at the end of pricing period. However, it is
possible to trade during the pricing period and still manage to be perfectly
hedged. We will illustrate how trading may be done during the pricing pe-
riod when the exchange ratio is unclear.

Next, we demonstrate how market implied deal break probability can
be evaluated using the time series of the spread. This is followed by a dis-
cussion on how the measured probability may be applied to evaluate the
value at risk in risk arbitrage deals. It turns out that the evaluation of stable
estimates of the deal break probability requires us to work on a smoothed
version of the spread. We delineate an approach for smoothing. The
smoothing process leads us to a methodology that could be useful in timing
the unwinding of the spread position.

SUMMARY

m Risk arbitrage relates to trading around corporate events, especially
mergers and acquisitions.

m The practice of risk arbitrage has a long history and is a widely practiced
arbitrage technique.
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m The mechanics involve putting on a spread position when the deal is an-
nounced and unwinding it on deal completion.

m The spread is a key market variable that the arbitrageur relates to.

m Its value is roughly equal to the dollar profit per share of target and also
indicative of the inherent risk of deal break.

m We also discuss a typical trading strategy.
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Trade Execution

INTRODUCTION

There is an oft-quoted maxim, “Concentrate on what you do best and dele-
gate the rest.” Going with this idea, the general preference of the arbitrageur
is to concentrate on deal analysis and delegate trade execution to a broker.
The execution in this case is fairly involved, as the trades need to be done on
a paired basis. Not only must the broker ensure that the positions in both the
stocks satisfy the particular exchange ratio, but he or she also needs to en-
sure that the fill prices on the stocks capture the specified spread. Thus, at
all times the broker needs to ensure that the ratio and spread constraints are
satisfied. Given that the execution is fairly involved, there are only a select
number of brokers who accept orders to be executed on a paired basis. In
any case, there is now a need to specify the order unambiguously to a bro-
ker. We will discuss the unambiguous specification of a paired transaction
in this chapter. There is also a need to verify that the order was executed to
satisfaction. We will also discuss issues pertaining to execution quality and
the criteria that could be used to measure it.

Next, we address trade executions in fixed value exchange transactions.
Recall that in such transactions, the exchange ratio is gradually revealed as
the pricing period unfolds, and the exact exchange ratio is known only at the
end of the pricing period. This seems to carry with it the implication that the
spread position can be put on only after the end of the pricing period and
not any time before that. However, that need not be the case. It is possible
to put on a spread position during the pricing period and still manage to be
perfectly hedged. We will discuss how that can be accomplished.

Also note that we expect to enter into a short position of considerable
size on the bidder stock when putting on the spread; that is, we need to ex-
ecute a short sale on the bidder stock. A short sale is the sale of stock that the
seller does not own but is committed to repurchasing eventually. The New
York Stock Exchange and the NASDAQ stock market require that any short
sale must occur when the price is rising; that is, on an uptick. Therefore,

151
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there are fewer opportunities to execute a short sale making it relatively
harder to short a stock. In fact, the uptick rule is meant to curb the impact
of attempts by short sellers to drive a stock’s price down through aggressive
selling. We will conclude this chapter with a few remarks on short selling.

PLACING AN ORDER

_oMM... WHAT ARETHE ) /
KR oN?

SPECIFYING THE ORDER

The first step to the successful execution of an intended trade is unambigu-
ous specification. In the case of a single stock execution, the order must at a
minimum specify clearly the ticker, the trade direction, and the trade quan-
tity. This is essentially what is known as the simple market order. Additional
constraints related to the price at which the trade may be executed are added
to this basic instruction and specified in what is well known as limit orders
or stop orders.

In the case of a paired transaction, we need to specify the bidder and tar-
get tickers, and the trade direction and trade quantity for each of them. The
other constraints specified include the spread to be captured between the
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stocks and the ratio of the bidder to target shares. As in the case of a single
order, it is also possible to get a partial fill in a paired execution. In this case,
the entire specified quantity is not filled. However, the quantity of completed
shares of the bidder and the target are expected to satisfy the ratio con-
straint, and the prices of the fills must be such that the calculated spread is
greater than or less than the specified value as the case may be. Therefore,
the two important constraints that distinguish a paired transaction from a
single stock transaction are the ratio and spread constraints.

We discuss here the specification of the details of a paired transaction.
An arbitrageur specifies an order to the broker by providing the following
information.

Bidder and Target Tickers

To execute an order, we would have to know the ticker symbols of the
stocks involved.

Action

This is to signal the arbitrageur’s intention. The arbitrageur can either put
on or unwind the spread position. Notice that this implicitly sets the direc-
tion for trading the bidder and target stocks. Put on implies that the broker
is required to sell the bidder stock and buy the target stock. Unwind refers
to the reversal of a spread position; that is, buy the bidder stock and sell the
target stock.

Ratio and Cash Amount

The ratio and the cash amount are part of the calculation formula used to
calculate the achieved spread. We repeat the formula here for convenience.

achieved spread = price paid for bidder stock x ratio + (10.1)
+ cash amount - price paid for target

The Spread Value

The specification of the spread value by the arbitrageur is similar to the limit
order for a single stock. The broker should aim to match or beat the speci-
fied spread value. Now when the spread is put on, the arbitrageur would like
for the spread to be as wide as possible. In this case, the broker should aim
to achieve a spread greater than the specified value. The situation is reversed
when we unwind the spread. Here, a low value for the achieved spread is
good, and the broker should aim to get as low a spread as possible on the
execution.
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Target Stock Quantity

This piece of information in the specification is rather straightforward. Im-
plicit in the target quantity specified is also the share quantity of the bidder
stock. The bidder stock quantity may be calculated using the formula

bidder quantity = ratio x target stock quantity (10.2)

Short Sale Indicator

The short sale indicator can take values yes or 70. Putting on a spread posi-
tion involves selling the bidder stock and buying the target stock. However,
if we do not own any of the bidder stock already, the only way we can put
on the spread is by selling the bidder stock short. Since this requires a short
sale, we would expect the short sale indicator to be set to yes. Similarly,
unwinding the spread involves covering the short position in the bidder with
a purchase of bidder stock and selling the target stocks that we already own.
This does not require a short sale, and we may expect the short sale indica-
tor to be set to no.

In fact, we could even go so far as to say that typically, we can expect
this flag to be set to yes when we put on the spread and to no when we un-
wind the spread. However, on occasion the arbitrageur may not have a
spread position corresponding to a particular merger in his or her portfolio.
Additionally, he or she may also happen to take the view that the merger is
unlikely to happen and may expect the spread to diverge. To participate in
such moves, the unwind order is placed first before the order to put on the
spread. This is sometimes termed as chinesing the spread. The unwinding
in these situations involves the sale of target shares without a prior position
and would therefore be accompanied with a short sell indicator of yes.

We illustrate the order specification with an example.

Example
Bidder ticker = HWP (Hewlett Packard Company)
Target ticker = CPQ (Compaq Computers Corporation)
Action = put on
Ratio =0.6325
Cash amount =0.0
Spread value =$2.30
Target stock quantity = 10,000
Short sell indicator = yes

Let us see what this order means. The action is to put on the spread. That
means we sell the bidder stock (Hewlett Packard) and buy the target stock
(Compagq). Also, the short sell indicator is a yes. Therefore, the sale of the bid-
der stock (Hewlett Packard) has to be a short sale. Now that we have fixed
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the direction of trading for the two stocks, let us determine the specified
quantities. The quantity of the target stock (Compaq) to be bought is speci-
fied as 10,000. The bidder quantity, however, is not specified. We deduce the
bidder quantity from the target share quantity and the exchange ratio using
the formula given. In this case, it is 10,000 x 0.6325 = 6325 shares. There-
fore, this is an order to buy 10,000 shares of CPQ and sell short 6,325 shares
of HWP. Are there any additional constraints? The answer is yes, and it is
specified in terms of the spread value. The spread measured on the fill prices
of the two stocks must be greater than or equal to the specified spread value
of $2.30. This spread in this case may be measured using the formula

0.6325 x price(HWP) + cash amount — price(CPQ) >= $2.30

Thus, the order unambiguously specifies the tickers, the trade direction,
trade quantity, the spread constraint, and the ratio constraint that are to be
satisfied.

VERIFYING THE EXECUTION

The paired execution order as specified to the broker is usually for a con-
siderable size in terms of the number of shares involved. Given the large po-
sition sizes and the fact that this is a paired transaction, the order is worked
by the broker in a series of executions. This is done on a best-effort basis.
The broker then delivers to the arbitrageur a list of executions for both the
stocks. It is now up to the arbitrageur to evaluate the quality of execution.

The quality of executions may be measured two ways, speed and effi-
cacy. In situations when there is news in the market and quick action is re-
quired, execution speed is of utmost importance and may very well be the
criterion upon which the execution quality is measured. However, in most
other situations the arbitrageur is interested in capturing as high a spread as
possible when putting on the spread and unwinding at as low a spread as
possible. In such cases, the execution efficacy, characterized by how well the
executions measure up to the specified spread value, is more important.
While one would ideally want to be able to capture as high a spread as pos-
sible in the shortest possible time, it is conceivable that a quick execution
could mean that one gives up on efficacy, causing a trade-off between the
two criteria for measurement of execution quality.

We now look at issues related to measuring execution efficacy. Of
course, in the course of the discussion we will see how it affects execution
speed. To measure efficacy, one can attempt to pair up the executions and
check to see if each paired execution satisfies the spread constraint, how
many missed the specified spread value, and by how much. A ratio of the
dollar value of the hits versus the misses could very well be the measure of
execution efficacy. Another option is to compare the specified spread value
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against the average achieved spread calculated using the execution prices of
the two stocks. We could then use the difference as a measure of execution
efficiency. The question therefore is, which measurement approach do we
choose? We recommend going with the second method; that is, the one
based on the average execution prices. We will justify our recommendation
by demonstrating that the first idea of pairing up executions to judge effi-
cacy is a process fraught with inconsistencies. To do just that, let us go
through the exercise of pairing the executions. This exercise in addition to
proving our point also provides insight into how we may characterize ag-
gressive and conservative trading.

Let us start with the pairing process. The input to the pairing exercise is
the list of executions. Each execution is characterized by the stock ticker, the
direction of execution (long or short),' the fill price, and the fill quantity.
The executions may therefore be partitioned into two sets based on the stock
ticker. The idea is to pair the executions of one ticker against the executions
of the other ticker such that the spread and ratio constraints are met. We for-
mulate the trade pairing exercise as a network flow problem.

HISTORY

One of the important subject areas of the latter part of the twentieth
century that has found successful application in a multitude of situa-
tions has been the study of network flows. The subject area was pio-
neered by Ford and Fulkerson. In their seminal paper published in
1956, they framed the network flow problem as an integer linear pro-
gram. Besides detailing an algorithm to solve for the optimal way to
route the flow across a network, they also provided a novel interpre-
tation of the dual of the network flow linear program, now famously
known as the max flow—min cut theorem.

Since then, network flows have found application in a wide vari-
ety of situations. Of relevance to finance, a subclass of the general
max—flow problem, known as matching, has found application in
game theory and to the theory of auctioning. Other applications of net-
work flows range from something as practical as logistic planning to
something as abstract as theorem proving,”> making this a fascinating
subject area for study in its own right.

ISince these trades are all done to fill the same order, we can expect the trade direc-
tion to be uniform across all executions for a given ticker.

2For an example, see Umesh Vazirani, “Rapid Mixing Markov Chains,” Proceedings
of the Symposia in Applied Mathematics, Vol. 44, 1991, pp. 99-121.
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As a necessary preprocessing step, we evaluate the equivalent target
share quantities for the fill quantities on the bidder side trades. This is ac-
complished by dividing the bidder fill quantities by the exchange ratio. These
are the share quantities that will be used in the modeling exercise. The net-
work flow problem can now be represented in a pictorial fashion.

Every execution is represented as a node. We pick a node from each of
the two sets (bidder trades and target trades) and determine if the fill prices
on the two executions satisfy the spread constraint. If satisfied, we draw an
edge or line between the two nodes or executions and assign a weight or ca-
pacity to it based on the number of shares that can be matched along that
edge. Thus, each edge represents a potential way to pair the executions. We
wish to match as many shares of the bidder as we possibly can with the tar-
get shares. The edges and the nodes form a network called a bipartite graph
in graph-theory parlance, and the pairing problem is equivalent to maxi-
mizing the flow on this bipartite network. The idea becomes clearer with the
following example:

Example

Consider an order specification with the following data:

Exchange ratio = 1.0

Cash amount = 0.0

Spread value specified = $1.00
Action = put on

Now, since we are putting on a spread, we sell the bidder and buy the tar-
get. The spread constraint is therefore met when the calculated spread is
greater than the specified value of $1. The executions list for the bidder and
target stocks when putting on the spread position is listed in Table 10.1.

The pairing problem can now be posed as a max-flow problem on the
network shown in Figure 10.1.

TABLE 10.1 Execution List.

Bidder List Target List
Ratio
Adjusted
Label ~ Quantity  Fill Price Quantity Label ~ Quantity  Fill Price
B1 100 19.0 100 T1 50 19.0
B2 100 19.5 100 T2 150 18.5

B3 100 20.0 100 T3 150 18.0
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Bidder Trades Target Trades

FIGURE 10.1 The Max-Flow Formulation.

Note that in Figure 10.1 we have explicitly shown the source and the
sink to identify the direction of flow, which should be from the source to the
sink. Each node represents an execution, and the details of the execution are
listed for each node. The maximum capacity of each edge is not shown in the
picture but is actually the smaller of share quantities of the nodes on either
end of the edge. The pairing problem is now equivalent to maximizing the
flow on this bipartite network. The linear programming formulation® may
be written as

Maximize x{ + X5 + X3 + X4 + X5 + Xg¢

sub:
x; <100 (1)
Xy + x3 <100 (2)
X4+ X5 + x¢ <100 (3)
x4 <100 (4)
Xy + x5 <150 (5)
X1+ X3+ x <150 (6)

3The linear programming formulation here is different from the conventional linear
programming representation of the max-flow problem. The interpretation of the
dual in this case is a minimum weighted set cover problem. However, since this is not
germane to the discussion, we will not pursue this in detail.
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x1 <100 (7)
x, <100 (8)
x3 <100 (9)
x4 <100 (10)
x5 <100 (11)
x¢ <100 (12)

X15X25 «evsXe 20

Let us examine the formulation shown here. The objective in the linear
program is the sum of the flows across all the edges, and we are right-
fully looking to maximize this quantity. Constraints 1-3 state that the total
outflow from a bidder node must not be greater than the share quantity of
that node. Likewise, constraints 4-6 ensure that the inflow into a target
node must not be greater than the share quantity of the node. The con-
straints 7-12 fix the maximum capacity of every edge. Thus, maximizing
the flow along this bipartite network leads us to a solution for our pairing
problem.

The solution approach to the general max-flow problem has been well
researched and a number of algorithms have been proposed to solve it. Also,
the pairing problem we address has a special structure. On account of this,
the solution method that would work for us is fairly straightforward. A de-
tailed description of both the general method and one tailored to our prob-
lem can be found in the appendix. The important point, however, is that the
modeling process and the solution method provide us with some insights
into the nature of the pairing problem itself.

In fact, the solution approach reveals that the answer to the pairing
problem is not unique, and it is possible to have a number of optimal paring
configurations for a given set of executions. Looking at Figure 10.2 we can
see that there are at least three possible configurations for the given set of ex-
ecutions in Table 10.1, begging the question as to which configuration we
should use to measure execution efficiency. It is now easy to appreciate the
futility of measuring efficiency by way of pairing. Note, however, that the
average achieved spread is a constant value regardless of the pairing config-
uration. We therefore contend that it is this measure that should form the
basis for verifying executions.

There is a flip side to looking at just the average spread. The broker may
trade away the edge gained on an earlier execution, of course ensuring that
the average spread criteria is met. To see what we mean, consider the situa-
tion with a target spread of $1.00 where the broker has completed about
half of the whole order, achieving a spread of $1.05. To satisfy the average
criterion, the broker needs to achieve a spread of just $0.95 on the remain-
ing half, which may not be what was intended by the arbitrageur.
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Bidder Trades Target Trades
100 at 50 at
$19.0 $19.0

100 50

150 at
$185

Configuration A:
excess 50 shares of target at $18.5

Bidder Trades Target Trades Bidder Trades Target Trades
100 at 50 at 100 at 50 at
$19.0 $19.0 $19.0 $19.0

100 100 50

50
100
100 at
$20.0
Configuration B: Configuration C:
excess 50 shares of target at $19.0 excess 50 shares of target at $18.0

FIGURE 10.2 Redundant Matchings.

In conclusion, it would help to indicate exactly what the evaluation cri-
terion would be to the broker. This will hopefully ensure that the execution
was completed as intended. The possibilities are

—_

Conservative trading. Ensure that there is at least one way to pair the
trade list such that each pair satisfies the spread criterion.

Aggressive trading. Ensure that the average spread achieved is the same
as or better than the specified spread value and therefore to the extent
possible the speed of execution matters.

N
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EXECUTION DURING THE PRICING PERIOD

In this section, we focus on trading in the context of fixed value exchange
transactions. In such transactions, the exchange ratio is determined based on
the stock price of the acquiring firm during the pricing period and is gradu-
ally revealed as the pricing period unfolds. Since knowledge of the exchange
ratio is important to executing a paired transaction, this would imply that
we can trade only at the end of the pricing period.

However, in some cases, this strict constraint may not be ideal for trad-
ing. To appreciate the fact, let us consider the situation wherein the end of
the pricing period is very close to the shareholders’ vote, or even worse, the
end of the period is well past the shareholders’ vote (these situations are not
uncommon in real life). In such situations, the time interval between the end
of the pricing period and the date of deal completion is rather short, leav-
ing very little time to put on a position of substantial size. To further com-
pound the situation, one has to deal with the prospect of rapidly narrowing
spreads.

Given this, the arbitrageur would prefer to not have to wait until the end
of the pricing period to put on a spread position. Therefore, even though the
exchange ratio is not known exactly, the arbitrageur would want to begin
trading before the end of the pricing period but trade in a way that leaves
him or her perfectly hedged (meet the ratio constraints on the pair) eventu-
ally. In this section, we will discuss an approach where we trade during the
pricing period and still manage to satisfy the ratio constraint at the end of
the period.

Consider the case where the exchange ratio is computed on a fixed
value of the target stock pT and the average closing price of the bidder
stock in the pricing period. Let the closing prices of the bidder stock be
D1sDas - -+ 5Dy starting from day 1 to day #, the last day in the pricing pe-
riod. Now, according to the terms of the fixed value exchange transac-
tions, the ratio (number of bidder stock exchanged for one target stock) is
given as

T

r = np
Py t+p,+... P,

(10.3)

This is the fixed value of target stock divided by the average of the closing
prices of the bidder stock in the pricing period. The reciprocal of the ex-
change ratio r is therefore

1_1(p Dy by 10.4
» n[pT+pT+m+pTJ (10.4)
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Interpreting Equation 10.4, the reciprocal of the exchange ratio is an av-
erage of the reciprocals of the realized exchange ratio in the pricing period.
We will exploit this idea in our approach to trade during the pricing
period. If we decide to put on a total spread position consisting of 7?
shares of the acquirer, the number of shares of the target #n” to be bought
is given as

n o =— (10.5)
7
n*(p, P P
nt = —| L+ 224+ (10.6)
ni\p" p’ p’
We can write this as
n’ =n1T+n2T+...+nI (10.7)
where
B
e A (10.8)
np

In other words, the formula tells us the amount of target shares to buy
on a daily basis for a fixed number of bidder shares such that we would be
fully hedged at the end of the pricing period. We can mimic this equation

during execution by shorting —£ shares of the acquirer and buying
. n
" p_; shares of the target on the (7 + 1)th day. At the end of the pricing
n

period plus one more day, we will be perfectly hedged. Alternately, we could
start by holding a naked short position on the bidder stock and buy the cor-
responding number of target stock on each day in the pricing period. Of
course, the captured spread would vary depending on the timing of trades of
the bidder stock.

There is a small caveat in all of this, though. Recall from the introduc-
tory chapter that the dollar profit is calculated on a per-target-share basis.
However, the total number of target shares that we buy in this case is known
only at the end of the pricing period. Thus, it would be reasonable to say
that we would know our position size (in target share terms) and expected
profits only at the end of the pricing period. Hence, by trading in this fash-
ion we will have replaced our uncertainty on the ratio by the uncertainty on
the position size/profits.
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Example
Days in pricing period n =20
Fixed value of target stock P, = $60
Closing price of bidder stock

on ith day, p, = $80.5
Total shares of bidder
to short 1 = 100,000
Shares of bidder to short for B
the next day =" =100,000/20 = 5000
Shares of target to buy for nB
the next day = n; X % = 5000 x (80.5/60.0) = 6708
T

Bounds on the Position Size

It was noted in the last section that when trading during the pricing period,
an arbitrageur has to be willing to replace the uncertainty in exchange ratio
with an uncertainty in position. However, there is still an interest in evalu-
ating some bounds on the position size of the target shares. In this section,
we derive some bounds on the ratio and show how it can be converted to
bounds on the position size.

To see how we can estimate bounds on the ratio, consider the fact that
the average of the closing prices of the stock is always between the maxi-
mum and the minimum prices. Thus, a very simple bound could be based on
that. If we assume a log-normal process for the price movement of the bid-
der stock, that is, the logarithm of the prices executes a Brownian motion,
the probability distribution for the maximum of a Brownian motion in time
¢ is given as

F =29 ~=|-1,x20 (10.9)
()

where o in the equation is the volatility of the Brownian motion and ® is the
cumulative density function of the normal distribution. The formula repre-
sents the probability that the Brownian motion will have a maximum value
less than or equal to x in the time duration ¢. By symmetry we can expect the
distribution of the minimum to be a flipped version of distribution of the
maximum for values less than 0. A plot of the distribution functions for the
maximum and minimum is shown in Figure 10.3.

Reading the graph, one can say that the maximum value of the Brownian
motion is less than the standardized value of 2.0 with 95-percent accuracy,
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FIGURE 10.83 Distribution of the Max and Min of Brownian Motion.
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the standardized value being —= . Thus, we can say with 95-percent con-

oVt
fidence that the average value of the Brownian motion will be between

x = =20+t and x.

We now combine the preceding information with the fact that the mean
of a sample is definitely lower than the maximum of the sample. The maxi-
mum can now be used as an upper bound for the mean. In a similar manner,
the minimum serves as a lower bound for the ratio. The bounds on the ratio
can quickly be translated into bounds for the target share quantity by mul-
tiplying the ratio bounds with the Bidder shares quantity. Thus, an estimate
of the maximum and minimum price during the pricing period may be used
to calculate the bounds on the exchange ratio.

We, however, believe that we could obtain a tighter bound than the one
just shown. To see that, let us consider the average of n numbers x,x,,...,x,,.
Now let the upper bounds for each of the numbers be b,,b,,...,b,. Then

X X+ +X, b +b+..+b,

” ” (10.10)
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Saying this in words, the upper bound for the average is the average of
the upper bounds. It is easy to see that the same argument is also true for
lower bounds. Exploiting this idea, we compute the bounds on the maxi-
mum and minimum for each day in the pricing period and use the average
of the bounds as the bound for the average. This is illustrated in the follow-
ing example.

Example

Consider the bidder stock selling at $80, 15 days into the pricing period con-
sisting of a total of 20 days. The realized average price in the 15 days for the
bidder stock is $79. The volatility of the bidder stock on an annualized basis
is 32 vol. The value of a target share is fixed at $60. We plan on shorting
100,000 bidder shares. So, what are the bounds on the number of target
shares that we would end up holding in the end?

Step 1: List the given information.

The daily volatility o = 32/\/252 =2.01%
Number of days to end of pricing period, N = 5 days

Current average price avg, =$79
Current closing price P s =$80
Total days in pricing period, T =20 days
Fixed value of target stock p,,, =60.0

Number of bidder shares #®

Step 2: We now compute the individual bounds in Table 10.2.

= 100,000 shares

TABLE 10.2 Bounds on Size of Target Position.

Log of Log of Price Price
Scaling Incremental Upper Lower Upper Lower
Days  Value Bound Bound Bound Bound Bound

n \/; 20'\/;

log(pclose)

+20\/;

log(pclose)

—20\/;

elog(UpBound)

elog(lowBound)

1 1.000 0.0402 4.4222 4.3418 83.2815 76.8478
2 1.414 0.0569 4.4389 4.3252 84.6798 75.5788
3 1.732 0.0696 4.4517 4.3124 85.7687 74.6192
4 2.000 0.0804 4.4624 4.3016 86.6976 73.8198
5 2.236 0.0899 4.4719 4.2921 87.5243 74.7976
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Step 3: Calculations
The average price upper bound for the five days, upperAvg = 85.5904

The average price lower bound for the five days, lowerAvg = 74.7976
The final price upper bound,

Pugper = ayg‘; NupperAvg _ g4 6476

The final price lower bound,

_ (T = N)avg, + N.lowerAvg 747976

Priower = T
Upper bound on number of target shares
Digt
= 100000 x 80.6476

60.0
= 134413 shares (with 95% confidence)

Lower bound on number of target shares

— 7’ZB plower

p tgt

— 100000 x 74.7976

=129,917 shares (with 95% confidence)

Note that in the preceding example, a volatility assumption is made for
the bidder stock. Therefore, a realistic value for the volatility leads to good
estimates. A reasonable approach to determining the volatility to use is to
look at the implied volatility of the options on the bidder stock and choose
the volatility corresponding to the contract with the most appropriate strike
and expiration.

SHORT SELLING

As discussed in the introduction, the uptick rule makes it harder to short the
stock. Until some time ago, a trading technique called married puts allowed
the traders to sidestep the rules that prevented short sales when a stock’s
price was falling steadily. The strategy involved the following steps. First,
buy a deep-in-the-money put with the closest maturity date. Then, tender for
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the shares. Now we are theoretically long the stock and can therefore sell it
without waiting for the uptick. This loophole has, however, been detected
and is now disallowed by the SEC.

In another approach to circumvent the uptick rule, one may also enter
into a stock swap, receiving the acquirer’s stock in exchange for cash. Now
we are long the stock and can therefore sell the stock without the uptick rule
restriction. To settle, we buy the acquirer’s stock in the market and return it
or pay the stock returns. In turn, we would receive LIBOR with a haircut.
Notice that this is similar to short selling except that we pay a premium for
the stock.

SUMMARY

m The arbitrageur normally executes the paired transaction through a
broker.

m Verifying the executions by pairing them is an approach fraught with in-
consistencies. It makes sense for the arbitrageur to insist on a firm aver-
age spread or better.

m It is possible to put on a spread position during the pricing period and
be perfectly hedged. In such situations, however, the exact position size
of the target stock is gradually revealed.

m Putting on a spread position typically involves a short sale and must be
executed in accordance with the uptick rule.

FURTHER READING MATERIAL

On Linear Programming and Network Flows

Chavatal, Vasek. Linear Programming. (New York: Freeman, 1983).
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APPENDIX

DINIC'S ALGORITHM FOR MAXIMUM FLOW IN
A NETWORK

In this section, we describe Dininc’s algorithm for maximum flow on a net-
work. The following are some additional concepts used in the description of
the algorithm.

Blocking Flow

A flow on a network is a blocking flow if every path from source to sink
contains a saturated edge (edge with full capacity flow through it). An ex-
ample of a blocking flow is shown in Figure 10.4. Also note that the flow is
not maximum. The optimal flow is shown in Figure 10.4.

Residual Graph

Associated with every feasible flow through the network is a weighted di-
graph called the residual graph. This is constructed in the following manner.
Let C be the capacity of the edge connecting vertices A and B. Let F be the
flow from A to B. The residual graph has a directed edge from A to B with
capacity C — F and another from B to A with capacity F. All edges with zero
capacity are removed from the graph thus constructed. The resultant graph
is the residual graph. An example of the residual graph corresponding to the
problem and the blocking flow is shown in Figure 10.4.

Flow Augmenting Paths

A flow augmenting path is a path on the residual graph from source to sink.
The maximum flow that can be sent through this path is limited by capacity
of the edges in the path. It is equal to the smallest capacity of an edge along
the path.

Dinic’s Algorithm

The steps in Dinic’s Algorithm are as follows:

1. Find a blocking flow for a given network.

2. Construct the residual graph corresponding to the current flow.

3. Find the shortest length augmenting path on the residual graph. (The
length of the path is equal to the number of edges in it.) If such a path
does not exist, then the current flow is the maximum flow.

4. If such a path exists, then augment the flow along the path. (Make the
corrections to the flow graph and the residual graph.) Go to Step 3.
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FIGURE 10.4 Max-Flow Algorithm.
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LAZY ALLOCATION ALGORITHM

Dinic’s algorithm is required for a general network. We hasten to add that
the matching problem we are required to solve has some additional proper-
ties. To recognize that, we organize the trades on the stock being sold in as-
cending order (group A) and the trades on the stock being bought in
descending order (Group B). Thus, each trade has a rank associated with it.
Also, if there is a feasible edge between the ith vertex in group A and the jth
vertex in group B, then there is a feasible edge between the ith vertex and all
the vertices in group B with rank greater than j. Similarly, there is a feasible
edge between the jth vertex in group B and all the vertices in group A with
rank less than i. This is illustrated in the ordering of the nodes in Figure 10.2.

To perform lazy allocation, we start from the vertex with the lowest
rank in group A and saturate the edge connecting it to the lowest possible
rank in group B. When the entire trade quantity from the vertex is accounted
for, we move on to the next vertex and do the same and work our way to the
last vertex. The consequence of the lazy allocation is that on a graph with
this structure, there is no flow augmenting path on the associated residual
graph, and the allocation is optimal. An example of such an allocation
method is demonstrated in Figure 10.2, configuration B.

Although there may not be any flow augmenting paths, there may be an
alternate flow routing on the residual graph, such that the flow along the di-
rected edge is zero. This implies that there could potentially be redundant
optimal routings.
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The Market Implied
Merger Probahility

INTRODUCTION

The spread value in a merger deal is a measure of the profit potential of a
trade. Knowledgeable players in the marketplace are likely to carefully assess
the profit potential and inherent risks and put on a position according to
their judgements. If the value of the spread is large and the risks inherent in

m



172 RISK ARBITRAGE PAIRS

the successful completion of the merger are small, then we can expect that
the players would put on a large position causing the spread to narrow. If,
however, the value of the spread narrows disproportionate to the risks, then
we can expect some profit taking causing the spread to widen. If there are
sufficient players in the marketplace engaging in risk arbitrage, the spread
would then in some sense represent the consensus estimate of the risk in-
volved in the deal and thereby the odds of successful completion of the
merger. Therefore, it makes sense to construct models to estimate the odds
of merger success taking the value of the spread into account.

In this chapter, we discuss a method to assess the probabilities of merger
as reflected by the spread between the stock prices of the merging compa-
nies. The method is based firmly on the classical results of the Arrow-Debreu
theory of contingent claims. The probabilities derived are called risk neutral
probabilities.

Risk neutral probabilities calculated for a merger are in many ways sim-
ilar to the implied volatility parameter encountered in option pricing. For
purposes of option pricing, stock price movement is modeled as a log-
normal process. One of the important parameters of the log-normal process
is its standard deviation. This standard deviation is commonly termed
volatility. The volatility of the underlying stock plays a crucial role in the
pricing of an option. Conversely, the price of an option quoted in the mar-
ketplace implies a certain volatility that when plugged into the option pric-
ing model results in the quoted option price. This volatility implied by the
option price is called the implied volatility.

In an analogous fashion, the probability of merger success as implied by
the observed spread may be calculated. Note that both implied volatility and
the merger probability specify probability distributions. Furthermore, they
are both calculated from values observed in the marketplace, and therein lies
the similarity between the two constructs. A key question, however, pertains
to the premise of the chapter. What is the value in knowing the market im-
plied probability of merger? Well, if one has a view based on independent re-
search that the true chance of merger success is better than the implied
probability, then entering into a trade may have a good risk-reward profile.
Thus, knowing the probability of merger can provide value in making in-
vestment decisions.

The implied probability of deal success can also prove useful in the area
of risk management. The risk manager is typically charged with assessing the
risk in multiple portfolios running multiple strategies. Unlike the risk arbi-
trage traders, risk managers are not disposed to know the intimate details of
every deal in the risk arbitrage portfolio. Using the market-implied proba-
bilities, the risk manager will be able to design meaningful value at risk
(VAR) measures for such deals. The VAR plays a key role in determining the
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reserve capital requirements for a bank. The requirements for reserve capi-
tal are designed to help markets survive extreme conditions by making sure
(to some extent) that the counterparties in a trade have enough reserve cap-
ital to meet their obligations. Ideally, we would like the reserve capital to be
the proverbial Goldilocks value, not too little and not too much. If the risk
measurement is too conservative, then we will need to post more reserves,
leading to underutilization of capital. If it is too aggressive, then we may not
have enough reserves to meet obligations during extreme moves. We will
propose a practical value at risk measurement approach for risk arbitrage
deals, based on the merger probabilities.

The chapter is organized as follows. First, we discuss briefly the Arrow-
Debreu theory, which forms the basis for our probability measure. We then
describe the single-step model for measuring merger probability success. The
single-step model is then extended to multiple steps. Subsequently, we rec-
oncile between the proposed theory and practice. This is followed by an ex-
ample application to risk management.

IMPLIED PROBABILITIES AND
ARROW-DEBREU THEORY

The purpose of this section is not so much to provide a formal description
of the Arrow-Debreu theory as much as to provide a flavor for it. Let us con-
sider the scenario that involves placing bets on a set of outcomes. Examples
of such events could be a boxing match or a horse race. In these cases, the
set of outcomes is finite and well defined. We will use the horse race exam-
ple for purposes of illustration. Important to the discussion is the notion of
betting. If, for example, the bet is placed in favor of a horse and it wins the
race, then the reward is the payoff from the bet. If it happens to lose, then
here, too, the reward is the payoff from the bet, except that the payoff is
probably zero dollars. Thus, a bet is completely defined when we specify the
payoff for every possible outcome. To place a bet, one has to put up the
stake money. This is specified by the bookie.

The Arrow-Debreu theory states that the full and complete specification
of bets with the stake money and the payoff for each outcome automatically
implies a probability for a particular outcome.! Additionally, the stake

The reasoning stems from the maximization of a linear utility function resulting in
a linear program with constraints. The weights happen to be the values of the dual
variables in the solution of the linear program. This work by Arrow and Debreu was
awarded the Nobel Prize in Economics.
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money must be the probability weighted payoff (also called the expected
payoff) across all outcomes. Also, if it so happens that a single set of prob-
ability weights is not able to account for the entire set of bets, then arbitrage
opportunities exist.

According to the theory, the probabilities are derived such that any two
bets with the same expected payoff have the same current value. It may be
that one of the two bets yields the expected payoff almost certainly and the
risk associated with it is minimal when compared to the other bet. This
scheme, however, treats both bets on an equal footing; that is, we are neu-
tral to risk. For this reason, the set of probabilities that are implied by the
definition of the bets are called risk neutral probabilities.

Continuing with the horse race example, let us say that the odds given
by the bookie for the horse race is as follows: 3 to 5 in favor of NiceAnd-
Easy, 2 to 3 in favor of WindSlicer, and 1 to 2 in favor of ButterBiscuit. For
instance, a successful bet of one dollar on ButterBiscuit returns the stake plus
two dollars, which is a total of three dollars. The terms of the bets are pre-
sented in Table 11.1.

Note that the first scenario described in Table 11.1 is the risk-free sce-
nario where a deposit of x dollars with the bookie results in a payoff of one
dollar no matter which horse wins. According to Arrow-Debreu theory, the
bet amount must be a weighted combination of the payoffs. If the probabil-
ity weights for each of the three horses winning are denoted as p,,,, 0.6 Ps»
then the following equations as given in matrix form must hold.

111 b x
8§ 0 O e 3
: pws =

05 0 p 2

00 3|t |1
TABLE 11.1 Terms of the Bet.

Payoff from the Bets
Bet NiceAndEasy WindSlicer ButterBiscuit

Bet scenario amount wins wins wins

Risk-Free Scenario
Bet On NiceAndEasy
Bet on WindSlicer
Bet on ButterBiscuit
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or specifically

DPune + Dws + Pop =X
Dy = 3/8 =0.375
Do =215 =04

Dy, = 1/3 = 0.333

The value of x from the preceding equations is therefore p,,, + P, + Pp
=1.108. So, if we deposit close to a dollar and 11 cents with the bookie, we
will get back a dollar. The loss for the bettor in this enterprise is therefore
100 x (0.108/1.108), which is approximately 9.7 percent. In other words, on
average the bookie gets to keep 10 cents on every dollar that is deposited as
stakes. Normalizing the probability weights to add up to one, we now have

Probability of NiceAndEasy winning = 0.375/1.108 = .338
Probability of WindSlicer winning = 0.4/1.108 = .361
Probability of ButterBiscuit winning = 0.333/1.108 = .301

Thus, WindSlicer is favored to win the race, with ButterBiscuit being the
underdog.

Note that we started our example with the specification of the bets and
their odds and have now derived the probabilities from it. Are the probabil-
ities the true probabilities for the outcome of the race? Maybe, then again
maybe not. This is, however, where the bookie will allow the bet to be
made. In the case of the markets, unlike the example here, the price/stake
amount of a bet is decided by the auctioning process. The price, therefore,
represents the consenus opinion of the participants. In such situations it
may be argued that the risk neutral probabilities represent the consensus of
the market.

THE SINGLE-STEP MODEL

We are now ready to formulate the single-step model to calculate the prob-
abilities implied by the spread. It is, however, good to remind ourselves of
the implicit assumptions we make during the modeling process. First, put-
ting on a spread involves a short position and we need to borrow stock. At
times it may turn out that a particular stock is unavailable for borrow. How-
ever, for purposes of our model, we will assume that the stock is always
available to borrow. Additionally, we also assume that there are no liquid-
ity issues and that it is possible to put on a spread position in size at the
current spread level observed in the market. This would imply that the trans-
action costs if any are negligible and may be assumed to be zero.



176 RISK ARBITRAGE PAIRS

To construct our model, let us now go through the mechanics of a risk
arbitrage trade. Initially, a spread position is created. We do this by estab-
lishing a short position in the target and a long position in the bidder,
yielding a dollar value equal to the spread. The proceeds from the trades are
reinvested at the risk-free rate. Let us call this spread at time zero S,. Upon
successful completion of the deal, the spread would converge to zero. The
position is reversed for no additional cost at time T, and the reward earned
by the investor will be e'T S, with 7 being the interest rate. In case there is
some cash paid out for the target shares, the payoff will be e’T S, + cash.
However, if the deal ends in a failure, the spread will not converge to zero
as expected. Instead, it inflates to a value of, say, S;. The position will still
need to be reversed, and a cost equal to the spread at time T, S, is incurred.
The net payoff in the event of deal failure is therefore '™ S, — S1. The dis-
cussion of the scenarios here is illustrated in a state diagram as shown in
Figure 11.1.

Payoff on
Success
eSy+cash

HSUL‘L‘ESS

Current
Spread: S,

T taittre

Payoff on
Deal Break

FIGURE 11.1  Single-Step Model.
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The state diagram in Figure 11.1 comes with a few caveats. Very often,
the fact that the deal is going to be unsuccessful is known much before the
time it would take for successful completion, in which case, treating both the
payoffs as if they are known at the same time would not be appropriate. For
our purposes, however, we choose to reflect this difference in timing in the
value of S; while keeping T a constant. Later on in the multistep model for-
mulation, we will eliminate the need to estimate St. Therefore, keeping T the
same for both the success and failure scenarios does not affect the outcome
of the model.

Recall that the initial cost of setting up the trade was zero. By the no ar-
bitrage condition the expected payoff is also zero. Writing out the equations,
we have

T eSS, + cash) + 7wy (€S, = S;) =0 (11.1)

success (

Tlsuccess + Tfailure = 1 (112)

where 7T, cess a0d i1 are the risk-neutral probabilities of successful merger
and failed merger, respectively. Solving the two equations, we have

Tipue = € (S, + e Tcash) / (S, + cash) (11.3)

Note here that in the derivation of the one-step model we apply the
Arrow-Debreu ideas to the spread. For the curious mind, the same results
may be obtained by applying the Arrow-Debreu ideas to the individual
stocks in question, also. The derivation of the formulas for the model using
the individual stocks is presented in the appendix.

In Equation 11.3 for failure probability, all the values are known or ob-
servable except for S, the spread in the future if the deal happens to break.
The value for this spread is anybody’s guess. Unless a reasonable value for
the deal break spread is known, the one-step model as it stands is of not
much use. We deal with this issue in the multistep model.

THE MULTISTEP MODEL

The multistep model relates the changes in the risk-neutral probability to the
dynamics of the spread movement. In this case, it is crucial to have an esti-
mate of deal break probability on the eve of the announcement. If we are
able to assess the probability of successful merger on the eve of the an-
nouncement, the value may be updated periodically based on the spread dy-
namics. This eliminates the need to guess at the deal break spread and thus
mitigates the problem of the one-step model. We now proceed to describe
the model.
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Spread=0
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FIGURE 11.2 Multistep Model.

Let #; and ¢, be points in the interval [0,T] and t, > L. We denote the

probabilities of failed merger at times #; and #, by, @ fallm, fmlm and the
spreads by Si> S respectively. See Figure 11.2.
Applying the one-step model, we have
Tt = €S, + e eash) /(S + cash) (11.4)
T ie = e'(T_tZ)(St2 +e"""cash) / (S, + cash) (11.5)

Dividing one by the other, we have
t t tH—t —r(T-t —r(T—t
Tihiure | Tue = €278, + 7T Weash) / (S, + e cash) (11.6)

To get a better feel for what the equation signifies, let us consider the situa-
tion of a pure stock-for-stock deal without a cash component. Making the
cash to zero, the equation in this case reduces to
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ﬂgilure/ngilure = er(t1_t1>si1 /St1 (117)
Taking logarithms on both sides, we now have
log(nftjﬂure) - log(ng”ure) = —r(t2 - t1) + log(Stz) - log(Stl) (11.8)

Let us see how this equation may be interpreted. First, when ¢, — ¢, is a
small quantity, the above becomes a difference equation. The left-hand side
is the difference in the logarithms of the probabilities. The negative loga-
rithm of probabilities can be interpreted as a measure of information con-
tent. Therefore, the left-hand side may be interpreted as the change in
information content between the times #, and #,. The right-hand side has a
term consisting of the difference in the logarithm of the spreads. This is, in
fact, the unrealized profit per target share. The other term on the right-hand
side represents the risk-free return. Therefore, the equation may be inter-
preted as saying that any return in excess of the risk-free rate is equal to the
change in the information content, that is, the reduction in the uncertainty
of deal break.

Once we have the initial probability value, that is, 7, ., all the proba-
bilities in the interval [0,T] can be evaluated using the difference Equation
11.8. We have thus eliminated the requirement to make a guess at the spread
value in case of deal break. This is replaced with the assessment of the ini-
tial deal break probability. As a practical matter, the risk-free rate values in
Equations 11.7 and 11.8 are rather negligible. We can therefore set r = 0 in
our calculations.

LOGARITHMS AND INFORMATION THEORY

The interpretation of the negative logarithm of probabilities as the in-
formation content was originally proposed by Claude E. Shannon in
his groundbreaking article “A Mathematical Theory of Communica-
tion,” published in 1948.2 Shannon was then working at Bell Labora-
tories. The powerful ideas describing the ways to measure rates of
information flow very soon became a discipline in its own right called
information theory. As a matter of fact, the word bit (as in bits per sec-
ond) that is so commonly used today is attributed to Shannon.

2¢A Mathematical Theory of Communication,” Bell System Technical Journal
27 (July and October 1948): 379-423; 623-656.
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The initial deal break probability can be naively estimated using a num-
ber of robust statistical methods based on past data relating to deal an-
nouncements and successful completions. Alternately, an assessment of the
fundamentals of the two merging companies can be used to arrive at the deal
break probability. Yet another approach could be to base it simply on the in-
stantaneous reduction of the spread on deal announcement. The average of
the logarithm of the spread for the 10 days just prior to deal announcement
could be used as the logarithm of the spread corresponding to a failure prob-
ability of 1.

RECONCILING THEORY AND PRACTICE

To see how the theory bears out in practice, let us look at some implications
of the preceding model. According to the theory, the expectation is that the
spread will converge to zero in the case of successful completion of merger.
Alternately, we expect it blow up or widen in case the merger does not go
through. We present both examples and counterexamples. In cases where
the model might not hold, we also provide possible reasons as to why that
would be the case. All the examples presented are taken from the merger
boom period of the late 1990s.

Also, the key value in the theory relates to the logarithm of the spread.
If the logarithm of the spread goes down in a linear fashion, then the spread
goes down in an exponential fashion. As a matter of fact, in the case of
mergers with no glitches along the ways, it is not unreasonable to expect the
logarithm of the spread to decrease in a linear fashion. We could therefore
expect the spread to exponentially approach zero as the merger date nears.

Now when the spread goes to zero, the logarithm of the spread goes to
negative infinity. In practice, we may assume a lower bound to the value of
the spread between the two stocks to be at least equal to or greater than the
bid-ask spread between them. At best, the spread could go to a penny. The
logarithm of the spread for a penny is —4.6. That would be about the lowest
value that we could expect for the logarithm of the spread.

With that said, let us look at some real-life deals. We start by looking at
some mergers where the spread behavior follows the model. Figure 11.3
shows examples where the theory holds. Figure 11.3a is a plot of the spread
for a successful merger. The bidder in this case was Newell Company, and
the target was Rubbermaid Corporation. The ratio for exchange was 0.7883.
The deal was announced on October 21, 1998, and completed March 24,
1999. Notice from the figure that it is conceivable that we could fit an ex-
ponential to the overall profile of the spread.

Figure 11.3b is a plot of the spread of an unsuccessful merger. The bid-
der was American Home Products (AHP), and the target was Monsanto
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Spread on Close

Spread on Close

FIGURE 11.3B  Unsuccessful Merger (AHP-MTC).

Corp. (MTC). The exchange ratio was 1.15. The deal was announced June 1,
1998. It became obvious that the deal was a failed deal around October 13,
1998. The plot of the spread in the graph is for these dates. Notice that the
spread does not converge at all. This is indicative of the risk involved in this
particular merger. When it becomes obvious that the deal will not go
through, the spread in fact blows up.

We also present cases where the theory does not bear out. Figure 11.4a
is a plot of an inverted spread. The bidder in this case was Venetor Group
(Z). The target was Sports Authority (TSA). The exchange ratio was 0.8.
The deal was announced May 7, 1998, and it became apparent that the deal
was unsuccessful around September 10, 1998. Note that the spread in this
case takes on negative values. The logarithm of the spread in this case is
undefined. It is not possible to apply the theory here. Such a situation is
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FIGURE 11.4B Unconverged Spread (BRK-GRN).

possible if there are not enough arbitrageurs participating in the merger. As
a consequence, the spread dynamics do not imply anything.

Figure 11.4b is a plot of an unconverged spread. The bidder in this case
was Berkshire Hathaway (whose chairman was the famous Warren Buffet).
The target was General Re, a reinsurance company. The deal was an-
nounced June 19, 1998, and completed December 21, 1998. It is interesting
to note that the spread on close was about $ 4.00; that is, the convergence
to zero did not happen. To see why that would be the case, note the fact that
Berkshire stocks were priced very high, and the exchange ratio was about
0.0035; that is, for every thousand shares of General Re we would need 3.5
shares of Berkshire to be perfectly hedged. This awkward exchange ratio is
hard to achieve given the average per-trade volume of General Re and Berk-
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shire. Thus, the liquidity of the stocks involved increases the execution risk
and caused the inefficiency.

We now apply the theory to the INTC-LEVL example discussed in
Chapter 10. Figures 11.5a and b are plots of the spread and the probability
implied by the spread as of the close. The initial probability is determined as
the percentage by which the spread narrows on deal announcement with re-
spect to the spread calculated on the 10-day average prices of the securities.
In this case it turns out to be close to 30 percent; that is, the spread narrowed
by about 70 percent on deal announcement. Note that the probabilities cal-
culated follow the spread values very closely. This results in a very noisy
picture. It is conceivable that the probabilities do not vary as much. It is
therefore useful to use some smoothing function on the spread before eval-
uating the implied probabilities. We will discuss this in greater detail in
Chapter 12.
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FIGURE 11.5B Probability of Deal Break (INTC-LEVL).
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RISK MANAGEMENT

One of the important tasks in risk measurement is the estimation of VAR, an
acronym for value at risk.

VAR Measurement

Let us now detail what we mean by VAR measurement starting with the out-
come of the measurement process. The outcome is a statement as follows:
“Under usual market conditions, there is a 2.5-percent chance of losing X
dollars in one day given the current list of positions.” The value X is the value
at risk and is based on the current (day’s close) mark to market. The value of
X is typically based on the statistics of the daily market movement in the past
two to three years—that is, the distribution of price movements—and, more
importantly, on the correlation between the price movements of various as-
sets. The exercise is therefore to determine what the likely value of X is.

Also note that there is nothing magical about use of the 2.5-percent
value in the VAR statement. It is an artifact left from the cultural condi-
tioning of dealing with Gaussian distributions and represents two standard
deviations in the Gaussian case. That value could therefore be 1 percent or
any number that one fancies.

Another key aspect of the preceding statement is the use of the phrase,
“usual market conditions.” This is because the measurement approach that
works under usual market conditions is not sound under extreme market
conditions. This is because the correlations that may be considered as rela-
tively stable under usual market conditions become erratic under extreme
market conditions causing the VAR approach to break down.

Applying the same reasoning based on the correlation between asset
prices, it is easy to deduce that commonly applicable methods to measure the
VAR on a portfolio may not be used in the case of risk arbitrage. The an-
nouncement of the deal causes a qualitative shift in the way the two compa-
nies are viewed in the marketplace. The historical correlation between them
is no longer relevant. The market dynamic now also reflects the possibility
of merger between the two companies and there is an increased level of cor-
relation between the returns of the bidder and target stocks. Therefore, any
VAR methodology that relies on long-term historical correlation is rendered
Inappropriate.

Furthermore, use of the historical correlation could potentially inflate
the VAR numbers, increasing risk capital requirements, resulting in an un-
realistic increased cost of doing business. This leads us to look for reason-
able ways to evaluate the value at risk involved in risk arbitrage trades.

The risk arbitrage trade at hand can be viewed in two ways. On event
of deal failure, it is equivalent to holding two separate securities, and tradi-
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tional VAR methodologies will apply. However, when the deal is on, the risk
is mostly due to the spread volatility, and the value at risk is best obtained
by measuring the spread volatility. Thus, based on the view we choose to
adopt, we now have two VAR values. We now reconcile between the two
views and arrive at a final VAR number by weighing each scenario. Fortu-
nately for us, the consensus probabilities of deal success and failure provide
us with a ready mechanism by which to weigh the two views.

Putting things more precisely, each of the two views may be associated
with a return distribution describing the probability of return of the trade in
the next time period. The overall probability distribution is then a weighted
sum of the two distributions, the weights corresponding to the probability
of deal success and deal failure, respectively. Distributions that are con-
structed as a weighted sum of other distributions are called mixed density
distributions.

To better understand the model, let us consider the process of drawing
a sample from a mixture distribution. This is actually a two-step process. In
the first step, we randomly choose the distribution from the available set of
distributions. The choice is guided by the probability weights assigned to
each distribution in the set. In the next step, we draw a random sample from
the chosen distribution.

Applying the mixture model to our situation, the probability of an out-
come x dollars or lower is given by the distribution function shown in Equa-
tion 11.9

F(X) = n’-successq)spread (x) + n-failureq)stockPortfolio (X) (119)

where @4 is the distribution of spread returns, and @ porefolio 1S the dis-
tribution of the returns assuming that there is no deal. The failure and suc-
cess probabilities serve as weights. Thus, given a value of x dollars, we can
find the probability that the returns will be less than or equal to x using the
above formula.

Note that VAR value is that value of x that results in the probability
value of 2.5 percent in Equation 11.9. Additionally, the distribution function
like every other distribution function is a nondecreasing function. As a con-
sequence, the VAR value may be deduced by applying a standard binary
search method. Thus, knowledge of the consensus probability estimates of
deal success and failure may be used to calculate the VAR in risk arbitrage
trades.

Event Risk Management

Oftentimes in risk arbitrage, the outcome of merger success or deal break
may hinge on a single event like the shareholders’ vote or a court decision.
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The arbitrageur may find the reward adequate but the risk too high. In such
situations, the arbitrageur can protect himself against a widening spread
through the use of options.

Typically, the target stock experiences higher volatility relative to the
bidder stock. The common strategy under these circumstances is to pur-
chase a put on the target stock, thus protecting against a steep drop in the
price of the target. While the price paid to enter into the hedge eats away at
some of the profit in the trades, the risk due to the put purchase is a lot
lower.

It may also be that the deal poses a high degree of risk for some time.
Once the event resolves itself favorably, the risk of deal break diminishes
substantially. The timing, strike, and expiration of the put used will there-
fore depend on the appetite for risk and the degree of risk aversion of the ar-
bitrageur.

It must therefore be noted that while at the surface the risk arbitrage
process seems cut and dried, there is still a substantial amount of decision
making and judgment calls that are left to the discretion of the arbitrageur.

SUMMARY

m The risk neutral probability of merger is the probability implied by the
observed spread between the bidder and target firms.

m It is similar to the implied volatility parameter for options.

m The evolution of the risk neutral probability of merger can be related to
the spread dynamics.

m It is useful in the design of more appropriate value at risk measures.

FURTHER READING MATERIAL

Risk-Neutral Probability

Jarrow, R. and S. Turnbull Derivative Securities, (Cincinnati, Ohio: 2" Edition.
South Western Publishing, 2000).
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APPENDIX

Notation
pd Price of security A on the eve of merger announcement
pe Price of security B on the eve of merger announcement
pi® Price of combined entity at time T
pa Price of security A in case of deal break at time T
pE Price of security B in case of deal break at time T
Tlguecess Probability of successful merger

Ttailure Probability of deal break
Y Ratio

We now construct Table 11.2 similar to Table 11.1.

TABLE 11.2
. Payoff (Price at Time T)

Investment Initial
Scenario Price Merger Successful Merger Failed
Risk-Free e’ 1 1

A AB A
Buy Stock A bo br pr

B AB B

Buy Stock B Ybo pr- + cash Ybr

The Arrow-Debreu equations that need to be satisfied written in matrix
form is as follows:

1 1 , et
T
p].éB p].é [ s,uccess:| — pa‘\

p]/}B + cash ,ypjbi failure pé}

’

! ccess and 7l and normalizing so that they add

Solving for the values of 7
up to 1, we have

Tiie = €T (08 — yDB) + cash] / [(p2 — ypZ) + cash]
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Applying the fact that

So = by — vbs
Sp = P? - VP?

We have

= (e'’S, + cash) / (S, + cash).

n-failure
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Spread Inversion

INTRODUCTION

In Chapter 11 we discussed that the risk neutral probabilities of merger can
be evaluated from the value of the spread as observed in the marketplace.
The reasoning was that market forces that affect the value of the spread take
into account the risk of deal completion. It is probably true that in most
cases the deal completion risk is the predominant factor affecting the spread
dynamics. However, the spread is also subject to idiosyncratic movement on
the part of any one of the two stocks in question. This movement can be due
to a variety of reasons that have nothing to do with the deal completion risk
and hence contributes to what we shall term noise in the evaluation of the
spread-implied probabilities. This fact is rather evident from the raw plot of
the spreads.

Some of the reasons for this behavior could be due to the bid-ask spread
of the individual stocks and the order of the buys and sells as they occur on
each individual stock. It could also be due to the market maker, looking to
adjust inventory. The market maker may move the price sufficiently higher
or lower albeit on a temporary basis to produce the desired supply or de-
mand in the stock and thereby adjust his inventory levels. Another reason
for the spread movement could be attributed to short covering on the target
stock especially right after the merger announcement. Therefore, when at-
tempting to evaluate the deal break probabilities, we need to bear in mind
that the observed spread is not a consequence of the deal risk alone.

However, if the deal risk is the predominant driver of the spread dy-
namics, the other effects may be treated as noise and filtered using classical
filtering methods. In this chapter, we propose the Kalman filter for the task.
The primary reason for proposing the Kalman filter is that it is robust and
easy to use. Unlike Weiner filtering methods, which are valid only for sta-
tionary stochastic signals, the Kalman filter may be applied to a wide vari-
ety of situations without restriction. This property conveniently precludes us
from coming to any conclusions on the stationarity of the spread and makes
it a suitable candidate method.

189
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A comprehensive introduction to the Kalman filter is provided in Chap-
ter 4. However, for sake of continuity we will summarize the method here
in a few sentences. The idea of Kalman filtering revolves around the notion
of state of the system. The process involves a sequence of state predictions
followed by observations. The predictions are then reconciled with the ob-
servations to obtain the best estimate of the state. Applying the idea to our
situation, let the state correspond to the logarithm of the spread. This
process then translates as follows. First, we make a prediction of the next
value for the log-spread and follow this with an observation after the elapsed
time. The predicted log-spread and the observed log-spread are then recon-
ciled to form the best estimate of the spread at that time instance. The
process is then repeated for the next time step.

Based on the discussion here, it is now obvious that Kalman filter de-
sign for our problem involves two main steps. First, we need to design the
prediction method that we plan to use, to provide us with an a priori
estimate of the state. Next, we need to model the observation process. The
outcome from the observation modeling process is a means of observing
the state along with a method to estimate the error variance in the obser-
vation. Once we have the prediction and observation, the Kalman filtering
process provides us with the means to reconcile between them to come up
with an estimate of the state; that is, the logarithm of the spread. This
value can in turn be used to estimate the spread implied probability of deal
break. Let us now discuss the modeling process for the prediction and ob-
servation equations.

THE PREDICTION EQUATION

The prediction equation is essentially an equation specifying the state tran-
sition for the Kalman filter. Since in our case the state corresponds to the
logarithm of the spread, the state equation in our case involves coming up
with a prediction scheme for the value of the spread at the next time step.
We of course have at our disposal all the past values of the spread right up
to the current time step. Let us therefore discuss how we can achieve that.

In order to motivate our choice for the state equation, we recall the dif-
ference equation from the previous chapter.

log(ﬂftjﬂure) - log(ﬂ'ftalﬂure) = —r(t2 - tl) + log(StZ) - log(St1) (12.1)

The left-hand side of the equation is equivalent to the rate of information
flow. The right-hand side is the return in excess of the risk-free rate. The
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implication is that under static interest rate conditions and a constant rate
of information arrival at the market, the rate of decay of the spread would
be a constant. However, the various milestones leading to the merger like
the filing of documents, the proxy vote, and so forth, all happen at discrete
times. So, how realistic is the assumption of a constant rate of information
flow? It turns out that it is not terribly unrealistic. When the merger an-
nouncement is made and events are set into motion, it creates an expecta-
tion in the marketplace as to the timing of the various milestones leading to
the merger. If a day passes without any news contrary to expectation, then
it strengthens the expectations. In that sense, the mere passage of time may
be construed as providing information leading to the strengthening of ex-
pectations—one of the very rare cases in the market where no news is con-
sidered good news.

A constant rate of information flow, according to the model, carries
with it the implication that the logarithm of the spread approaches zero in a
linear fashion. In fact, this would be a very reasonable assumption, if the
deal were to proceed without any hiccups. However, given the vicissitudes
of the deal process, such an assumption might prove to be untenable. Nev-
ertheless, it may still be reasonable to assume that the logarithm of the
spread is piecewise linear; that is, the rate of spread reduction is about the
same as observed in the recent past. Therefore, we model the spread at the
next time instant to be the current spread decremented by the instantaneous
rate of reduction of the spread. The state equation is given as

X=X+ A + & (12.2)

where A,_; is the instantaneous rate of change of the spread. Note that Equa-
tion 12.2 can also be viewed as the first two terms of a Taylor expansion of
the spread about X, ;.

This, therefore, brings us to the requirement of specifying a scheme to
evaluate the instantaneous rate of change of the spread, A,_;. A naive method
would be to use the correction rate of the past time step given by

At—l = Xt—1|t—1 - Xz—2|z—2 (12.3)
A little more sophisticated method would be to take the minimum variance

weighted average of the past two correction rates given by

A

At—l = rt(Xt—llt—l - j{z—zlt—z) + (1 - rt)(j(t—zlt—z - Xt—3|t—3) (12.4)

where 7, is the weight. Alternately, one could obtain an estimate of the cor-
rection rate by taking the mean correction rate over the past d time steps;
that is,
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A

(Xt—llz—l - Xz—2|t—2)+""’ +(Xz—dlz—d - Xz—l—dlt—l—d)
Ay = (12.5)

d
(Xt—llt—l - Xt—l—dlt—l—d)
-1 = d

Thus, the process of evaluating the instantaneous rate of reduction of the
spread could vary depending on d, the number of time steps in the past that
we use in our estimation. Consequently, we could have different state equa-
tions corresponding to different values of d, the lag parameter, and for each
such state equation, a version of the Kalman filter could be implemented.

But which one of the state equations is most suited for our purpose? Let
us defer this question for now and address it a little later in the chapter.

Another point that is noteworthy in the modeling of the prediction
equation is the fact that the actual equation used is different for each time
step. The exact values for the coefficients in the prediction equation are es-
timated at each time step based on the instantaneous rate of spread reduc-
tion. This is a little different from typical Kalman filter implementations that
have a fixed prediction equation with fixed coefficients. We are now ready
to move on to the observation equation.

THE OBSERVATION EQUATION

The observation at a given time instant is the logarithm of the spread. Asso-
ciated with an observation is a measure of the error. The magnitude of this
error is quantified in terms of the error variance. The observation equation
is written as

Y, =X, +7, (12.6)

where Y, is the logarithm of the observed spread at time ¢ and 7, is the ob-
servation error with zero mean and variance O',i. We now therefore need to
estimate the variance of our observation.

To estimate the variance of the observation, we draw on the notion of
realized volatility. Realized volatility is essentially an empirical volatility
measure that sums the squared tick-by-tick returns over a given period. The
construction of the realized volatility measure is based on some theoretical
results of integrated volatility defined in the context of continuous stochas-
tic processes. A detailed discussion on realized volatility measures and its
scaling properties can be found in the reference material.

Bear in mind that if we use the realized volatility as a measure of the
variance in the observation, then we would need access to tick data. The
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spread can then be evaluated on a tick-by-tick basis and the sum of squared
returns on the spread could be used as a measure of observation variance. In
the absence of tick data we use the following approximation to estimate the
realized volatility measure. Initially, the four spreads corresponding to the
open high low and close prices for the day of the two stocks are computed.
Note that the times in which the two stocks registered their highs could be
different; nevertheless, we treat them as if the highs were registered simulta-
neously. The sum of squared returns on the spread is calculated on the two
possible spread paths; namely, open-high-low-close and open-low-high-
close. The smaller of the two values is then chosen to be the variance of the
observation. The question the reader might ask at this point is, “Is this re-
ally the variance of the error in the observation?” It is probably not. How-
ever, the variances thus calculated are not used to price any instrument. It
should suffice that the measured variances are proportional to the actual
error variances and that the relative order of the errors associated with the
observations is preserved. This ensures that the weighting of the observa-
tions in the evaluation of the state estimate in done in a consistent manner
resulting in state estimates that seem to be satisfactory.

To get an intuitive feel for the volatility measure, consider the following.
As the spread gets closer to zero, the bid-ask spread of the individual stocks
measured as a percentage of the spread between the two stocks becomes
higher. It then gets increasingly harder to tell whether the change in spread
is real or due to microstructure or bid-ask effects. Thus, as the spread re-
duces, we should expect an increase in its variance.

APPLYING THE KALMAN FILTER

Summarizing the discussions so far, in order to apply the Kalman filtering

approach to smooth the spread, we went through the exercise of modeling

the prediction equation and the observation equation. The Kalman state in

our situation corresponds to the logarithm of the true spread, and the ob-

servation corresponds to the logarithm spread as observed in the market.
The state equation as applicable in our situation is given as

X=X+ A+ & (12.7)

where X, is the state at time #, A,_; is the time derivative of X, ;, and &, is the
state noise. The time derivative A,_; may be estimated by measuring the av-
erage change in the spread over different lag values. The observation equa-
tion is given by

Y, =X, +n, (12.8)
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where Y, is the observation and 7, is the observation noise with zero mean
and variance of ¢2.

With this information we are now ready to apply the Kalman-filtering
ideas in a recipe-like fashion (as discussed in Chapter 4). We list the recipe
below once again for sake of continuity. The a priori estimate of the state at
time ¢ given all observations up to time # — 1 is denoted as X,,,_,, and the
posteriori estimate of the state at time ¢ given all the observations up to time
tis given as X,,. The various steps are then as follows:

1. Evaluate )A(”H and Var(f(tlH) using the state equation.
2. Find the observation Y, and Var(Yt) by observing the system.

3. Evaluate K,, also known as the Kalman gain, which will be used to ob-
tain the linear minimum error variance estimate.

4. Evaluate X, given by X,,_, + Kt(Yt - )A(m_l)

5. Finally, evaluate var{X,,

tlt

These steps are repeated for the next time step. The exact formulas to use for
the various steps are derived in simplified form in the appendix.

MODEL SELECTION

Note that based on the preceding scheme, we have multiple models for the
prediction equation. The differentiating factor amongst them is d, the lag
factor used in the estimation of the instantaneous error correction rates. For
each of the prediction equations, we can implement a unique Kalman filter-
implementation. We therefore need to choose the implementation that
is most appropriate; that is, we need to make an appropriate choice for the
parameter d.

The principle guiding our choice for the lag value d is the maintenance
of the delicate balance between prediction and observation. Relying overly
on the prediction would mean that we rely excessively on our model and do
not give enough weight to what is observed in practice. However, relying too
much on the observation would mean that we do not have any view what-
soever on where the spread must be and so must rely excessively on the noisy
observation. The right model choice achieves a happy medium between the
two extremes. Let us therefore look at how we can quantify this notion of a
happy medium.

The basic idea is to work with the two sources of error; namely, the
measurement/observation error and the state transition prediction error.
We denote the measurement cost as the sum of all measurement errors
and the prediction cost as the sum of all the prediction errors. More pre-
cisely, if X;,X,,X5,...,X, are the estimated states of the Kalman filter,
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Y,,Y,,Y;,...,Y,, the measurements, and Z,2Z,,Z5,...,Z,, the predicted val-
ues from the state equation, then

n

2
measurement cost = z (Xl - Yz)
i=1

n
prediction cost = 2 (XI. - ZZ.)2
i=1
These cost functions may be considered the measures of effectiveness of
the measurement and the state transition models. A high prediction cost in-
dicates a poor prediction model. Similarly, a high observation cost indicates
a poor observation model. If the two models must be equally effective, it
makes sense to require that the values of the two cost functions be more or
less the same.
Additionally, we also know that the Kalman estimate for the state is a
convex combination of the measured and predicted states; that is, given k; to
be the Kalman gain at the ith time step, we have

Xi = (1 - ki)Zi + kiXi (12.9)
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The discussion on model selection in the case of smoothing functions
can be viewed as a situation where we attempt to separate the signal
from noise given a sum of both. On the one hand, we can be very con-
servative and treat every kink as meaningful and separate out very lit-
tle as noise. On the other hand, we can throw the baby out with the
bathwater and oversmooth the given signal, discarding part of the sig-
nal along with the noise. The model selection criterion above provides
us with a methodology to achieve a balance between both extremes.
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This dependency on the measured and predicted states requires both the
measurement model and the prediction model to be fairly precise. Having
one of them to be very precise and the other to be erroneous leads us to
overly rely on one or the other and is likely to produce a mediocre result.
Thus, in some sense there is a trade-off to be made between the observation
and prediction costs, and the reduction of one of the costs at the expense of
the other is highly undesirable.

With this motivation, we define the cost function associated with a
Kalman filter to be

cost function = measurement cost + prediction cost (12.10)

This cost function serves to keep the system honest. If in an attempt to re-
duce the cost function, we try to reduce the prediction cost, it would be all
right as long as it does not increase the measurement cost and vice versa. The
best choice for our prediction equation is therefore the one that results in
the minimum value for this cost function.

To demonstrate the approach, let us apply it to a real-life situation. Fig-
ure 12.1 is a plot of the spread and the corresponding Kalman smoother for
various lags. The bidder in this case is McKesson Inc., and the target is HBO
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FIGURE 12.1 Kalman Filter Implementations (MCK-HBOC).
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FIGURE 12.2 Model Choice ( MCK-HBOC).

and Company. The exchange ratio is 0.37. The deal was announced Octo-
ber 19, 1998, and completed January 13, 1999. Notice that smaller lags tend
to follow the data more closely. Increasing the lag results in greater smooth-
ing and greater deviations from the data.

We also have a plot of the cost function as discussed for various lags. See
Figure 12.2.

Note that the minimum cost value occurs at lag 3. A visual examination
of the smoothed series for lag 3 against the series for other lags shows that
it is indeed a reasonable choice.

Thus, a low value for the lag parameter d implies a noisy set of state es-
timates, making the Kalman filter very sensitive to the observations. Alter-
nately, a high value for the lag parameter d denotes a smoother set of states
and the observations are largely ignored. The most suitable value for the lag
parameter is one that minimizes the cost function.

APPLICATIONS TO TRADING

Along with the smoothed version of the spread, at every time instant, the
Kalman filter also estimates the error standard deviation at each point. This
can be treated as error bands, about a mean estimate, similar to bollinger
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bands in technical analysis. Trading can be undertaken when the observed
spread is on the upper and lower fringes of the band.

We, however, add a note of caution. When the spread widens to the
upper fringe of the band, it may be because there is some deterioration in the
fundamentals of the merger and may not be just an aberration. Therefore,
one needs to exercise extreme caution when putting the spread on. The mat-
ter is straightforward when timing the unwind. If the observed spread is near
the bottom fringe of the band, then one can safely unwind the position and
get back into it again at a higher spread level.

Illustrated in Figure 12.3 is a plot of the spread, the Kalman smoother,
and the error bands. The bidder in this case was Alza Pharmaceuticals. The
target was Sequus Pharmaceuticals. The exchange ratio was 0.4 share. The
deal was announced October 5, 1998, and completed March 17, 1999.

Last, it is important to bear in mind that the smoothing scheme in Fig-
ure 12.3 has been set up with daily data in mind. When looking at data on
an intraday basis, there is likelihood of running into intraday effects on the
spread variance at market open and market close. One can expect that the
spread variance is high around those periods and lower during the middle of
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FIGURE 12.3 Kalman Smoothing with Confidence Bands (AZA-SEQU, lag 5).
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the day. The constant arrival of information assumption is probably not cor-
rect under such circumstances.

SUMMARY

m The spread observed in the marketplace between two companies in-
volved in a merger is likely to be distorted due to other market effects
like the bid-ask spread effects and market maker inventory adjustments.

® The Kalman filtering approach is a suitable smoothing technique for es-
timating the actual spread levels.

m The filtered spread could be used for the risk-neutral probability and
also assist in timing executions.

FURTHER READING MATERIAL

Kalman Filter

Harvey, A. C. Time Series Models, 2" Edition. (Cambridge, Mass: MIT Press, 1993),
pp- 82-104.
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Kalaba, R., and T. Tesfatsion. “A Multicriteria Approach to Model Specification and
Estimation.” Computational Statistics and Data Analysis 21 (1996): 193-214.

Realized Volatility

Anderson, T. G., and others. “The Distribution of Exchange Rate Volatility.” Sym-
posia 99, Statistical Issues in Risk Management. Leonard N. Stern School of
Business, April 1999.
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APPENDIX

Kalman Filter Design: Lag 1

The state equation of the Kalman filter is given as

tle-1 t—1lt-1 t-2lt-2

X -k X
Var(tht—l) =4 Var(Xt—llt—l) + Var(Xz—zlt—z) -4 COV(Xz—llt—l’ Xt—2|t—2)
The observation equation is given as
Y, =X, +n,

The variance of Y, is calculated as described in the discussion on the obser-
vation equation. We now define

Var(Yt)
Var(Yt) + var(f(ﬂtfl)

8 =

where g, = 1 — K,, K, is the Kalman gain as described in the standard predictor-
corrector framework. The posteriori estimate of the state, and its variance is
given as

A

let = g tlt-1 ( )
var( X,y var(,

tle-1

Var(Xm) - Var(Xm_l) + Var(Yt)

We note that the a posterori estimate is actually a convex combination of the
a priori estimate and the observation. The value of g, as computed here en-
sures that the variance of the resulting combination is a minimum. We now
proceed to obtain a recursive relation for cov X: " . The Kalman equa-
tion for the subscript £ — 1 is

A A

Xt—llt—l = gt—IXt—llt—Z + (1 - gt—l)Yt—l

Substituting for X, . ,, we have

A

Xt—llt—l = 81 (25(#2“72 - )A(t—3lt—3) + (1 — 81 )Yt—l
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Multiplying the above by )A(tfz and evaluating the expected value, we have

A ~

COV(Xt—llt—l’ Xt—zlt—z) =& l_z Var(ﬁzletfz) - COV()A(t—ZIt—Z’ Xt—Slt—3)J

Kalman Filter Design: Lag 2

In order to enhance readability, we use )A(t and )A(m interchangeably to de-
note the posteriori state estimate. The state equation of the Kalman filter is
obtained as a first order approximation of the Taylor expansion about the
current point. To do that, an estimate of the derivative is required. The pre-
vious design used the first difference of the previous step as an estimate of
the derivative. In this design, the derivative is estimated with two sample
points. The mean and variance of the first sample are as follows:
E(samplel) = )A(H - )A(tfz

var(samplel) = Var()A(t_l) + Var()A(l_z) -2 cov(f(l_l, )A(l_z)

The mean and variance of the second sample are as follows:

E(sample 2) = Xz-z + )A(t_3
var(sample 2) = Var(Xt_z) + var(f(t_3) -2 cov(f(t_z, )A(t 3)

The covariance between the two samples are as follows:

cov(samples) = cov[(f(t_l - Xt_z), (Xt_z - Xt_3)J

>
>

cov(samples) = cov()A(H, )A(zfz) - Var(f(tfz) - cov(

+ cov(Xz_z, XZ_3)

The minimum variance linear combination of the two samples is given by

A A A

Tt(Xt—1 - Xr—z) + (1 - rt>(Xt—2 - Xt—3)

where 7, is given as

var(sample 2) — cov(samples)

var(sample 1) + var(sample 2) — 2 cov(samples)
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Now the state equation is given as

A

X

tle-1

X (R - K+ (=) (R - XL

et = (1 + rt)f(H + (1 - 2rt)5(t72 - (1 - rt)f(H

var(R, 1) = (1+7,) var(R,, )+ (1= 20,) var(X, ) + (1= 7,) var(X, )
+ 2(1 + 7z)(1 - Zrt) cov()A(H, )A(H)

=21+ 1) 1= 7,)cov(X, ,, X, ;)

=21 =21, )(1-7,)cov(X, 1, X, )

X

The observation equation is given as

Y, =X, +n,

t

The variance of Y, is calculated as described in the discussion of the obser-
vation equation. We now define

Var(Yt)
Var(Yt) + var(f(tIH )

8 =

g, = 1-K,, where K, is the Kalman gain as described in the standard predictor-
corrector framework. The Kalman equations providing the minimum vari-
ance linear estimate are as follows:

Xﬂt = gtkzlz—l + (1 - gt)Yt

Var()A(tlH) Var(Yz)
Var(f(tlt_l) + Var(Yt)

var(%,,) =

A A

We now proceed to obtain the recursive relation for COV(XH, Xz-z)- The
Kalman equation for subscript ¢ — 1 is as follows:

tht—l = gt—lxt—llt—z + (1 - gt)Yt—l

Substituting for X, ,,,_,, we have
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A

Xt—llt—l =81 [(1 T )th—z + (1 - zrz—l )th—3 -

- (1 - rH)f(H + (1 -2, )YH
Multiplying the above by X,_, and evaluating the expected value, we have
cov(X, . %, ,) = gt_l[(l wr)var(X, ) + (1= 21, )eov(X, . X, ) -
— (1= 1) cov(X, 5, X4)]
Multiplying by X,_, and evaluating the expected value, we have
cov(X, . %, ) =g, [(1 1) cov(&, 5, X, )+ (1-2n ) var(X, ) -

- (1 - rt_l) cov()A(t_y )A(t_4)]

Kalman Filter Design: Lag d (d >= 3)

To enhance readability, we use X,, and X, interchangeably to denote the
posteriori state estimate. The slope is estimated as the mean of the last d
slope samples. This is given as

The state equation is therefore

><>

tlt 1

4
1 ~
tlt 1 ( ) C_iXt—l—d

The state variance is given by

(1 + 2)2 Var(f{t_l) + c% Vaf(f(t—l—d)
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the assumption being that X, ;and X, ;_, are not correlated. The observa-
tion equation is given as

Y, =)A(t+nt

t

The variance of Y, is calculated as described in the discussion of the obser-
vation equation. We now define

Var(Yt)
Var(Yt) + Var(Xﬂt—l)

& =

The Kalman equations providing the minimum variance linear estimate are
as follows:

A

let = gtf{tlt—l + (1 - gt)Yt
Var(Xt|t_1) var(Yz)
) + Var(Yt)

Var(let ) B Var(X

tle—1
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