(1) How to be a <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom-style: dashed !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$M A$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$H 2$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| $M A$ |
| :---: | :---: | :---: |
| $H 2$ |</table-markdown></div>

YOUR BRILLIANT BRAIN AND HOW TO TRAIN IT

aOB

Senior editor Francesca Baines Project editors Clare Hibbert, James Mitchem Designer Hoa Luc Senior art editors Jim Green, Stefan Podhorodecki Additional designers Dave Ball, Jeongeun Yule Park

> Managing editor Linda Esposito Managing art editor Diane Peyton Jones

Category publisher Laura Buller
Production editor Victoria Khroundina Senior production controller Louise Minihane

Jacket editor Manisha Majithia Jacket designer Laura Brim

Picture researcher Nic Dean
DK picture librarian Romaine Werblow
Publishing director Jonathan Metcalf Associate publishing director Liz Wheeler Art director Phil Ormerod

This book is full of puzzles and activities to boost your brain power. The activities are a lot of fun, but you should always check with an adult before you do any of them so that they know what you're doing and are sure that you're safe.

First American edition, 2012
Published in the United States by
DK Publishing
375 Hudson Street
New York, New York 10014

Copyright © 2012 Dorling Kindersley Limited
121314151610987654321
001-182438-09/12

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Published in Great Britain by Dorling Kindersley Limited.
A catalog record for this book is available from the Library of Congress.

ISBN: 978-0-7566-9796-9

> DK books are available at special discounts when purchased in bulk for sales promotions, premiums, fund-raising, or educational use. For details, contact: DK Publishing Special Markets, 375 Hudson Street, New York, New York 10014 or SpecialSales@dk.com.

TRAIN your BRAIN to be a

CONTENTS

6 A world of math

MATH BRAIN

10 Meet your brain
12 Math skills
14 Learning math
16 Brain vs. machine
18 Problems with numbers
20 Women and math
22 Seeing the solution

INVENTING NUMBERS
26 Learning to count
28 Number systems
30 Big zero
32 Pythagoras
34 Thinking outside the box
36 Number patterns
38 Calculation tips
40 Archimedes
42 Math that measures
44 How big? How far?
46 The size of the problem

MAGIC NUMBERS

50 Seeing sequences
52 Pascal's triangle
54 Magic squares
56 Missing numbers
58 Karl Gauss
60 Infinity
62 Numbers with meaning
64 Number tricks
66 Puzzling primes

AHzer

SHAPES AND SPACE

70 Triangles
72 Shaping up
74 Shape shifting
76 Round and round
78 The third dimension
80 3-D shape puzzles
82 3-D fun
84 Leonhard Euler
86 Amazing mazes
88 Optical illusions
90 Impossible shapes

A WORLD OF MATH
94 Interesting times 120 Glossary
96 Mapping
122 Answers
98 Isaac Newton
100 Probability
102 Displaying data
104 Logic puzzles and paradoxes
106 Breaking codes
108 Codes and ciphers
110 Alan Turing
112 Algebra
114 Brainteasers
116 Secrets of the Universe
118 The big quiz

The book is full of problems and puzzles for you to solve. To check the answers, turn to pages 122-125.

It is impossible to imagine our world without math. We use it, often without realizing, for a whole range of activities-when we tell time, go shopping, catch a ball, or play a game. This book is all about how to get your math brain buzzing, with lots of things to do, many of the big ideas explained, and stories about how the great math brains have changed our world.

Math

Looking inside
This cross-section of the skull reveals the thinking part of the brain, or cerebrum. Beneath its outer layers is the "white matter," which transfers signals between different parts of the brain.

LEFT-BRAIN SKILLS

The left side of your cerebrum is responsible for the logical, rational aspects of your thinking, as well as for grammar and vocabulary. It's here that you work out the answers to calculations.

Scientific thinking
Logical thinking is the job of the brain's left side, but most science also involves the creative right side.

Mathematical skills
The left brain oversees numbers and calculations, while the right processes shapes and patterns.

Language

The left side handles the meanings of words, but it is the right half that puts them together into sentences and stories.

Rational thought

Thinking and reacting in a rational way appears to be mainly a left-brain activity. It allows you to analyze a problem and find an answer.

MEET YOUR BRAIN

Your brain is the most complex organ in your body-a spongy, pink mass made up of billions of microscopic nerve cells. Its largest part is the cauliflower-like cerebrum, made up of two hemispheres, or halves, linked by a network of nerves. The cerebrum is the part of the brain where math is understood and calculations are made.

The outer surface

Thinking is carried out on the surface of the cerebrum, and the folds and wrinkles are there to make this surface as large as possible. In preserved brains, the outer layer is gray, so it is known as "gray matter."

Right eye Collects data on light-sensitive cells that is processed in the opposite side of the brain-the left visual cortex in the
occipital lobe
1.

RIGHT-BRAIN SKILLS

The right side of your cerebrum is where creativity and intuition take place, and is also used to understand shapes and motion. You carry out rough calculations here, too.

Imagination

The right side of the brain directs your imagination. Putting your thoughts into words, however, is the job of the left side of the brain.

Neurons and numbers

 Neurons are brain cells that link up to pass electric signals to each other. Every thought, idea, or feeling that you have is the result of neurons triggering a reaction in your brain. Scientists have found that when you think of a particular number, certain neurons fire strongly.

Doing the math
 This brain the math

person who was workinged out on a of subtraction prorking out a series and orange areas shows. The yellow the brain that were prod the parts of most electrical nere producing the interesting isal nerve signals. What's the brain are that areas all over

Spatial skills Understanding the shapes of objects and their positions in space is a mainly right-brain activity. It provides you your ability to visualize.
Cerebellum Tucked beneath the cerebrum's two halves, this structure coordinates the body's muscles

Spinal cord Joins the brain to the system of nerves that runs throughout the body

Art
The right side of the brain looks after spatial skills. It is more active during activities such as drawing, painting, or looking at art.

Music

The brain's right side is where you appreciate music Together with the left side it works to make sense of the patterns that make the music sound good.

Insight

Moments of insight occur in the right side of the brain. Insight is another word for those "eureka!" moments when you see the connections between very different ideas.

MATH
 SKILLS

About 10 percent of people think of numbers as having colors. With some friends, try scribbling the first number between 0 and 9 that pops into your head when you think of red, then black, then blue. Do any of you Many parts of your brain are involved in math, with big differences between the way it works with numbers (arithmetic), get the same answers?

How do you count? When you count in your head, do you imagine the sounds of the numbers, or the way they look? Try these two experiments and see which you find easiest.
(3) There are four main styles of thinking, any of which can be used for learning math: seeing the words written, thinking in pictures, listening to the sounds of words, and hands-on activities.

Step 1
Try counting backward in 3 s from 100 in a noisy place with your eyes shut. First, try "hearing" the numbers, then visualizing them.

Step 2
Next, try both methods again while watching TV with the sound off. Which of the four exercises do you find easier?

A quick glance
Our brains have evolved to grasp key facts quickly-from just a glance at something-and also to think things over while examining them.

Step l

Look at the sequences belowjust glance at them briefly without counting-and write down the number of marks in each group.
((8) The part of the brain that can "see" numbers at a glance only works up to three or four, so you probably got groups less than five right. You only roughly estimate higher numbers, so are more likely to get these wrong.

Step 2

Now count the marks in each group and then check your answers. Which ones did you get right?

IIIIII II | IIIIIII II IIII II

 IIIII | IIIIII |IIIIII III IIIIIIIII
Number cruncher

Your short-term memory can store a certain amount of information for a limited time. This exercise reveals your brain's ability to remember numbers. Starting at the top, read out loud a line of numbers one at a time. Then cover up the line and try to repeat it. Work your way down the list until you can't remember all the numbers.

Abstract

Most people can hold about seven numbers at a time in their short-term memory. However, we usually memorize things by saying them in our heads. Some digits take longer to say than others and this affects the number we can remember. So in Chinese, where the sounds of the words for numbers are very short, it is easier to memorize more numbers.

Eye test

This activity tests your ability to judge quantities by eye. You should not count the objectsthe idea is to judge equal quantities by sight alone.

Step 1

Set out the three bowls in front of you and ask your friend to time you for five seconds. When he says "go," try to divide the candy evenly between them.

You will need:

- Pack of at least 40 small pieces of candy
- Three bowls
- Stopwatch
- A friend

Step 2

Now count up the number of candy pieces you have in each bowl. How equal were the quantities in all three?

(8) You'll probably be surprised how accurately you have split up the candy. Your brain has a strong sense of quantity, even though it is not thinking about it in terms of numbers.

Spot the shape
In each of these sequences, can you find the shape on the far left hidden in one of the five shapes to the right?
(8) We have a natural sense of pattern and shape. The Ancient Greek philosopher Plato discovered this a long time ago, when he showed his slaves some shape puzzles. The slaves got the answers right, even though they'd had no schooling.

1

A 2

4

B
A

A

A

B $\underset{H}{A}$

B

C

D

D

D

E

E

For many, the thought of learning math is daunting. But have you ever wondered where math came from? Did people make it up as they went along? The answer is yes and no. Humans-and some animalsare born with the basic rules of math, but most of it was invented.

LEARNING MATH

A sense of numbers

Over the last few years, scientists have tested babies and young children to investigate their math skills. Their findings show that we humans are all born with some knowledge of numbers.

Baby at 48 hours

Newborn babies have some sense of numbers. They can recognize that seeing 12 ducks is different from 4 ducks.

Animal antics

Many animals have a sense of numbers. A crow called Jakob could identify one among many identical boxes if it had five dots on it. And ants seem to know exactly how many steps there are between them and their nest.

ACTIVITY

Can your pet count?

All dogs can "count" up to about three. To test your dog, or the dog of a friend, let the dog see you throw one, two, or three treats somewhere out of sight. Once the dog has found the number of treats you threw, it will usually stop looking. But throw five or six treats and the dog will "lose count" and not know when to stop. It will keep on looking even after finding all the treats. Use dry treats with no smell and make sure they fall out of sight.

Sensory memory We keep a memory of almost everything we sense, but only for half a second or so. Sensory memory can store about a dozen things at once.

Short-term memory We can retain a handful of things (such as a few digits or words) in our memory for about a minute. After that, unless we learn them, they are forgotten

How memory works

Memory is essential to math. It allows us to keep track of numbers while we work on them, and to learn tables and equations. We have different kinds of memory. As we do a math problem, for example, we remember the last few numbers only briefly (short-term memory), but we will remember how to count from 1 to 10 and so on for the rest of our lives (long-term memory).

Prodigies

A prodigy is someone who has an incredible skill from an early age-for example, great ability in math, music, or art. India's Srinivasa Ramanujan (1887-1920) had hardly any schooling, yet became an exceptional mathematician. Prodigies have active memories that can hold masses of data at once. machine-the human brain would be the winner! Although able to perform calculations at lightning speeds, the supercomputer, as yet, is unable to think creatively or match the mind of a genius. So, for now, we humans remain one step ahead.

Hard work

More often than not, dedication and hard work are the key to exceptional success. In 1637, a mathematician named Pierre de Fermat proposed a theorem but did not prove it. For more than three centuries, many great mathematicians tried and failed to solve the problem. Britain's Andrew Wiles became fascinated by Fermat's Last Theorem when he was 10 . He finally solved it more than 30 years later in 1995.

Savants

Someone who is incredibly skilled in a specialized field is known as a savant. Born in 1979, Daniel Tammet is a British savant who can perform mind-boggling feats of calculation and memory, such as memorizing 22,514 decimal places of pi ($3.141 \ldots$), see pages 76-77. Tammet has synesthesia, which means he sees numbers with colors and shapes.

Your computer:

- Has about 10 billion transistors
- Each transistor can send about one billion signals per second
- Signals travel at speeds of about 120 million miles (200 million km) per second
- Stops working when it is turned off

Computers

When they were first invented, computers were called electronic brains. It is true that, like the human brain, a computer's job is to process data and send out control signals. But, while computers can do some of the same things as brains, there are more differences than similarities between the two. Machines are not ready to take over the world just yet.

Artificial

intelligence
An artificially intelligent computer is one that seems to think like a person. Even the most powerful computer has nothing like the all-round intelligence of a human being, but some can carry out certain tasks in a humanlike way. The computer system Watson, for example, learns from its mistakes, makes choices, and narrows down options. In 2011, it beat human contestants to win the quiz show Jeopardy.

Numerophobia

A phobia is a fear of something that there is no reason to be scared of, such as numbers. The most feared numbers are 4, especially in Japan and China, and 13. Fear of the number 13 even has its own name-triskaidekaphobia. Although no one is scared of all numbers, a lot of people are scared of using them!

Dyscalculia

Which of these two numbers is higher? 76 If you can't tell within a second, you might have dyscalculia, where the area of your brain that compares numbers does not work properly. People with dyscalculia can also have difficulty telling time. But remember, dyscalculia is very rare, so it is not a good excuse for missing the bus.

PROBLEMS WITH

A life without math wies are born with a sense of Ale complicated ideas need to numbers, more complices use and teach be taught. Most socieie -but not all of them. these mathematical ideas-buple of Tanzania, Until recently, the Hadza pounting, so their for example, did not users beyond 3 or 4 . language had no numbers beyond 3 or 4 .

Too late to learn? Math is much easier to learn when young than as an adult. The great 19th-century British scientist Michael Faraday was never taught math as a child. As a result, he was unable to complete or prove his more advanced work. He just didn't have a thorough enough grasp of mathematics.

Visualizing math

Sometimes math questions sound complicated or use unfamiliar words or symbols. Drawing or visualizing (picturing in your head) can help with understanding and solving math problems. Questions about dividing shapes equally, for example, are simple enough to draw, and a rough sketch is all you need to get an idea of the answer.

Practice makes perfect

For those of us who struggle with calculations, the contestants who take part in TV math contests can seem like geniuses. In fact, anyone can be a math whizz if they follow the three secrets to success: practice, learning some basic calculations by heart (such as multiplication tables), and using tips and shortcuts.

A lot of people think math is tricky, and many try to avoid the subject. It is true that some people have learning difficulties with math, but they are very rare. With a little time and practice, you can soon get to grips with the basic rules of math, and once you've mastered those, then the skills are yours for life!

The 13th-century thinker Roger Bacon said, He who is ignorant of [math] cannot know the other sciences, nor the affairs of this world."

Misleading numbers

Numbers can influence how and what you think. You need to be sure what numbers mean so they cannot be used to mislead you. Look at these two stories. You should be suspicious of the numbers in both of them-can you figure out why?

The bigger picture
In World War I, soldiers wore cloth hats, which contributed to a high number of head injuries. Better protection was required, so cloth hats were replaced by tin helmets. However, this led to a dramatic rise in head injuries. Why do you think this happened?

A useful survey?

Following a survey carried out by the Association for More Skyscrapers (AMS), it is suggested that most of the 30 parks in the city should close. The survey found that, of the three parks surveyed, two had fewer than 25 visitors all day. Can you identify four points that should make you think again about AMS's survey?

WOMEN AND DATH

Historically, women have always had a tough time breaking into the fields of math and science. This was mainly because, until a century or so ago, they received little or no education in these subjects. However, the most determined women did their homework and went on to make significant discoveries in some highly sophisticated areas of math.

Sofia Kovalevskaya

Born in Russia in 1850, Kovalevskaya's fascination with math began when her father used old math notes as temporary wallpaper for her room! At the time, women could not attend college but Kovalevskaya managed to find math tutors, learned rapidly, and soon made her own discoveries. She developed the math of spinning objects, and figured out how Saturn's rings move. By the time she died, in 1891, she was a university professor.

Kovalevskaya took discoveries in physics and turned them into math, so that tops and other spinning objects could be understood exactly.

Amalie Noether

German mathematician Amalie "Emmy" Noether received her doctorate in 1907, but at first no university would offer her-or any woman-a job in math. Eventually her supporters (including Einstein) found her work at the University of Gottingen, although at first her only pay was from students. In 1933, she was forced to leave Germany and went to the United States, where she was made a professor. Noether discovered how to use scientific equations to work out new facts, which could then be related to entirely different fields of study.

Noether showed how the many symmetries that apply to all kinds of objects, including atoms, can reveal basic laws of physics.

Hypatia

Daughter of a mathematician and philospher, Hypatia was born around 355 ce in Alexandria, which was then part of the Roman Empire. Hypatia became the head of an important "school," where great thinkers tried to figure out the nature of the world. It is believed she was murdered in 415 ce by a Christian mob who found her ideas threatening.

Augusta Ada King

Born in 1815 , King was the only child of the poet Lord Byron, but it was her mother who encouraged her study of math. She later met Charles Babbage and worked with him on his computer machines. Although Babbage never completed a working computer, King had written what we would now call its program-the first in the world. There is a computer language called Ada, named after her.

What do you see?

The first step to sharpening the visual areas of your brain is to practice recognizing visual information. Each of these pictures is made up of the outlines of three different objects. Can you figure out what they are?

Thinking in $2-D$
Lay out 16 matches to make five squares as shown here. By moving only two matches, can you turn the five squares into four? No matches can be removed.

Visual sequencing

To do this puzzle, you need to visualize objects and imagine moving them around. If you placed these three tiles on top of each other, starting with the largest at the bottom, which of the four images at the bottom would you see?

1

2

3

4

Math doesn't have to be just strings of numbers. Sometimes, it's easier to solve a math problem when you can see it as a picture-a technique known as visualization. This is because visualizing math uses different parts of the brain, which can make it easier to find logical solutions. Can you see the answers to these six problems?

Seeing is understanding
A truly enormous snake has been spotted climbing up a tree. One half of the snake is yet to arrive at the tree. Two-thirds of the other half is wrapped around the tree trunk and $5 \mathrm{ft}(1.5 \mathrm{~m})$ of snake is hanging down from the branch. How long is the snake?

3-D vision

Test your skills at mentally rotating a
3-D shape. If you folded up this shape
to make a cube, which of the four
options below would you see?

Recent studies show that playing video games develops visual awareness and increases short-term memory and attention span.

Forty percent of your brain is dedicated to seeing and processing visual material.

Illusion confusion

Optical illusions, such as this elephant, put your brain to work as it tries to make sense of an image that is in fact nonsense. Illusions also stimulate the creative side of your brain and force you to see things differently. Can you figure out how many legs this elephant has?

Inventing

numbers

LEARNING TO COUNT

We are born with some understanding of numbers, but almost everything else about math needs to be learned. The rules and skills we are taught at school had to be worked out over many centuries. Even rules that seem simple, such as which number follows 9, how to divide a cake in three, or how to draw a square, all had to be invented, long ago.

4. Egyptian math

Fractions tell us how to divide things-for example, how to share a loaf between four people. Today, we would say each person should get one quarter, or $1 / 4$. The Egyptians, working out fractions 4,500 years ago, used the eye of a god called Horus. Different parts of the eye stood for fractions, but only those produced by halving a number one or more times.

1. Fingers and tallies

People have been counting on their fingers for more than 100,000 years, keeping track of their herds, or marking the days. Since we humans have 10 fingers, we use 10 digits to countthe numerals $0,1,2,3,4,5,6,7,8$, and 9 . In fact, the word digit means "finger." When early peoples ran out of fingers, they made scratches called tallies instead. The earliest-known tally marks, on a baboon's leg bone, are 37,000 years old.

5. Greek math

Around 600 bCE, the Greeks started to develop the type of math we use today. A big breakthrough was that they didn't just have ideas about numbers and shapes-they also proved those ideas were true. Many of the laws that the Greeks proved have stood the test of time-we still rely on Euclid's ideas on shapes (geometry) and Pythagoras's work on triangles, for example.

2. From counters to numbers

The first written numbers were used in the Near East about 10,000 years ago. People there used clay counters to stand for different things: For instance, eight oval-shaped counters meant eight jars of oil. At first, the counters were wrapped with a picture, until people realized that the pictures could be used without the counters. So the picture that meant eight jars became the number 8 .

3. Babylonian number rules

The place-value system (see page 31) was invented in Babylon about 5,000 years ago. This rule allowed the position of a numeral to affect its value-that's why 2,200 and 2,020 mean different things. We count in base-10, using single digits up to 9 and then double digits ($10,11,12$, and so on), but the Babylonians used base-60. They wrote their numbers as wedge-shaped marks.

b. New math

Gradually, the ideas of the Greeks spread far and wide, leading to new mathematical developments in the Middle East and India. In 1202, Leonardo of Pisa (an Italian mathematician also known as Fibonacci) introduced the eastern numbers and discoveries to Europe in his Book of Calculation. This is why our numbering system is based on an ancient Indian one.

The Egyptians used symbols of Walking feet to represent addition and subtraction. They understood calculation by imagining a person walking right (addition) or left (subtraction) a number line.

Fizz-Buzz!

Try counting with a difference.
The more people there are, the more fun it is. The idea is that you all take turns counting, except that when someone gets to a multiple of three they shout "Fizz," and when they get to a multiple of five they shout "Buzz." If a number is a multiple of both three and five, shout "Fizz-Buzz."If you get it wrong, you're out. The last remaining player is the winner.

> Fizz-Buzz!
> Fizz-Buzz!

NUMBER SYSTEMS

The numbers we know and love today developed over many centuries from ancient systems. The earliest system of numbers that we know today is the Babylonian one, invented in Ancient Iraq at least 5,000 years ago.

Table of numbers Ancient number systems were nearly all based on the same idea: a symbol for 1 was invented and repeated to represent small or low numbers. For larger numbers, usually starting at 10, a new symbol was invented. This, too, could be written down several times.

Counting in tens Most of us learn to count using our hands. We have 10 fingers and thumbs (digits), so we have 10 numerals lalso called digits). This way of counting is known as the base-10 or decimal system, after decem, Latin for "ten."

BIG

Although it may seem like nothing, zero is probably the most important number of all. It was the last digit to be discovered and it's easy to see why-just try counting to zero on your fingers! Even after its introduction, this mysterious number wasn't properly understood. At first it was used as a placeholder but later became a full number.

Pythagoras

Pythagoras is perhaps the most famous mathematician of the ancient world, and is best known for his theorem on right-angled triangles. Ever curious about the world around him, Pythagoras learned much on his travels. He studied music in Egypt and may have been the first to invent a musical scale.

Strange society

In Croton, Pythagoras formed a school where mainly math but also religion and mysticism were studied. Its members, now called Pythagoreans, had many curious rules, from "let no swallows nest in your eaves" to "do not sit on a quart pot" and "eat no beans." They became involved in local politics and grew unpopular with the leaders of Croton. After officials burned down their meeting places, many of them fled, including Pythagoras.

Pythagorean theorem Pythagoras's name lives on today in his famous theorem. It says that, in a right-angled triangle, the square of the hypotenuse lthe longest side, opposite the right angle) is equal to the sum of the squares of the other two sides. The theorem can be written mathematically as $a^{2}+b^{2}=c^{2}$.

For Pythagoras the most perfect shape-making number was 10 , its dots forming a triangle known as the tetractys.

Pythagoras thought of odd numbers as male, and even male, and even
numbers as female.
Early travels Born around 570 BCE on the Pythagoras traveled to Egypt, Babylon (modern-day Iraq), and perhaps even India in search of knowledge. When he was in his forties, he finally settled in Croton, a town in Italy that was under Greek control.

Dangerous numbers
Pythagoras believed that all numbers were rational-that they could be written as a fraction. For example, 5 can be written as $5 / 1$, and 1.5 as $3 / 2$. But one of his cleverest students, Hippasus, is said to have proved that the square root of 2 could not be shown as a fraction and was therefore irrational. Pythagoras could not accept this, and by some accounts was so upset he committed suicide. Rumor also has it that Hippasus was drowned for proving the existence of irrational numbers.

Pythagoreans realized that sets of pots Pythagoreans realized of water sounded harm to simple ratios

Math and music
Pythagoras showed that musical notes that sound harmonious (pleasant to the ear) obey simple mathematical rules. For example, a harmonious note can be made by plucking two strings where one is twice the length of the other in other words, where the strings are in a ratio of $2: 1$.

Pythagoras believed that the Earth was at the center of a set of spheres that made a harmonious sound as they turried.

The number legacy

Pythagoreans believed that the world contained only five regular polyhedra (solid objects with identical flat faces), each with a particular number of sides, as shown here. For them, this was proof of their idea that numbers explained everything. This theory lives on, as today's scientists all explain the world in terms of mathematics.

Tetrahedron

 4 triangular faces

Cube

Octahedron

Dodecahedron

Icosahedron

Some problems can't be solved by working through them step-by-step, and need to be looked at in a different way-sometimes we can simply "see" the answer. This intuitive way of figuring things out is one of the most difficult parts of the brain's workings to explain. Sometimes, seeing an answer is easier if you try to approach the problem in an unusual way-this is called lateral thinking.
l. Changing places You are running in a race and overtake the person in second place. What position are you in now?

2. Pop!

How can you stick 10 pins into a balloon without popping it?
4. Sister act A mother and father have two daughters who were born on the same day of the same month of the same year, but are not twins. How are they related to each other?
7. Left or right? A left-handed glove can be changed into a right-handed one by looking at it in a mirror. Can you think of another way?
B. The lonely man There was a man who never left his house. The only visitor he had was someone delivering supplies every two weeks. One dark and stormy night, he lost control of his senses, turned off all the lights, and went to sleep. The next morning it was discovered that his actions had resulted in the deaths of several people. Why?

NUMBER PATTERNS

Thousands of years ago，some Ancient Greeks thought of numbers as having shapes， perhaps because different shapes can be made by arranging particular numbers of objects． Sequences of numbers can make patterns，too．

Square numbers

If a particular number of objects can be arranged to make a square with no gaps， that number is called a square number． You can also make a square number by ＂squaring＂a number－which means multiplying a number by itself： $1 \times 1=1$ ， $2 \times 2=4,3 \times 3=9$ ，and so on．


```
12 = 1
!12 = lこ!
1112 = lこヨこ!
llll己 = l,234321
111!12 = l23454321
1111112 = lこ345654321
```

Something odd
The first five square numbers
are $1,4,9,16$ ，and 25 ．Work

Triangular numbers

If you can make an equilateral triangle la triangle with sides of equal length) from a particular number of objects, that number is known as triangular. You can make triangular numbers by adding numbers that are consecutive (next to each other): $0+1=1,0+1+2=3,0+1+2+3=6$, and so on. Many Ancient Greek mathematicians were fascinated by triangular numbers, but we don't use them much today, except to admire the pattern!

Prison break

It's lights-out time at the prison, where 50 prisoners are locked in 50 cells. Not realizing the cells' doors are locked, a guard comes along and turns the key to each cell once, unlocking them all. Ten minutes later, a second guard comes and turns the keys of cells $2,4,6$, and so on. A third guard does the same, stopping at cells $3,6,9$, and so on. This carries on until 50 guards have passed the cells. How many prisoners escape? Look out for a pattern that will give you a shortcut to solving the problem.

Shaking hands

A group of three friends meet and everyone shakes hands with everyone else once. How many handshakes are there in total? Try drawing this out, with a dot for each person and lines between them for handshakes. Now work out the handshakes for groups of four, five, or six people. Can you spot a pattern?

A perfect solution? The numbers $1,2,3$, and 6 all divide

 into the number 6 , so we call them its factors. A perfect number is one that's the sum of its factors (other than itself). So, $1+2+3=6$, making 6 a perfect number. Can you figure out the next perfect number?
CALCULATION TITPS

Mathematicians use all kinds of tricks and shortcuts to reach their answers quickly. Most can be learned easily and are worth learning to save time and impress your friends and teachers.

To work out 9×9, bend down your ninth finger.

Multiplication tips

Mastering your times tables is an essential math skill, but these tips will also help you out in a pinch:

- To quickly multiply by 4, simply double the number, and then double it again.
- If you have to multiply a number by 5 , find the answer by halving the number and then multiplying it by 10 . So 24×5 would be $24 \div 2=12$, then $12 \times 10=120$.
- An easy way to multiply a number by 11 is to take the number, multiply it by 10 , and then add the original number once more.
- To multiply large numbers when one is even, halve the even number and double the other one. Repeat if the halved number is still even. So, 32×125 is the same as 16×250, which is the same as 8×500, which is the same as $4 \times 1,000$. They all equal 4,000 .

Division tips
There are lots of tips that can help speed up your division:

- To find out if a number is divisible by 3 , add up the digits. If they add up to a multiple of 3 , the number will be divisible by 3 . For instance, 5,394 must be divisible by 3 because $5+3+9+4=21$, and 21 is divisible by 3 .
- A number is divisible by 6 if it's divisible by 3 and the last digit is even.
- A number is divisible by 9 if all the digits add up to a multiple of 9 . For instance, 201,915 must be divisible by 9 because $2+0+1+9+1+5=18$, and 18 is divisible by 9 .
- To find out if a number is divisible by 11 , start with the digit on the left, subtract the next digit from it, then add the next, subtract the next, and so on. If the answer is 0 or 11, then the original number is divisible by 11 . For example, 35,706 is divisible by 11 because $3-5+7-0+6=11$.

Fast squaring
If you need to square a two-digit number that ends in 5 , just multi the first digit by itself plus 1 , thetiply put 25 on the end. So to square 1 , then 15, do: $1 \times(1+1)=2$, then attach 25 to give 225. This is how you can work out the square of 25 :

$$
\begin{aligned}
& 2 \times(2+1)=6 \\
& 6 \text { and } 25=625
\end{aligned}
$$

4

Calculating a tip
If you need to leave a 15 percent tip after a meal at a restaurant, here's an easy shortcut: Just work out 10 percent (divide the number by 10), then add that number to half its value, and you have your answer.

[^0]In Asia, children use an abacus (a frame of bars of beads) to add and subtract faster than an electronic calculator.

Beat the clock

Test your powers of mental arithmetic in this game against the clock. It's more fun if you play with a group of friends.

Step 1

First, one of you must choose two of the following numbers: $25,50,75,100$. Next, someone else selects four numbers between 1 and 10. Now get a friend to pick a number between 100 and 999. Write this down next to the six smaller numbers.

Step 2

You all now have two minutes to add, subtract, multiply, or divide your chosen numbers -which you can use only once -to get as close as possible to the big number. The winner is the person with the exact or closest number.

Archimedes

Early life

Archimedes was born in Syracuse, Sicily, in 287 BCE. As a young man he traveled to Egypt and worked with mathematicians there. According to one story, when Archimedes returned home to Syracuse, he heard that the Egyptian mathematicians were claiming some of his discoveries as their own. To catch them, he sent them some calculations with errors in them. The Egyptians claimed these new discoveries too, but were caught when people discovered that the calculations were wrong.

Archimedes was probably the greatest mathematician of the ancient world. Unlike most of the others, he was a highly practical person too, using his math skills to build all kinds of contraptions, including some extraordinary war machines.

Eureka!

Archimedes' most famous discovery came about when the king asked him to check if his crown was pure gold. To answer this, he had to measure the crown's volume, but how? Stepping into a full bath, Archimedes realized that the water that spilled from the tub could be measured to find out the volume of his body-or a crown.
On discovering how to measure volume, Archimedes is said to have jumped out of his bath and run naked down the street, shouting, "Eureka!" (I've found it!).

Ingenious inventions Archimedes is credited with building the world's first planetarium-a machine that shows the motions of the Sun, Moon, and planets. One thing he didn't invent, despite it bearing his name, is the Archimedean screw. It is more likely that he introduced this design It is more likely that he in seen it in Egypt.
for a water pump, having sel An Archimedean screw is a cylinder with a screw
inside. The screw raises water as it turns.

Thinking big

One of Archimedes' projects was to try to find out how many grains of sand would fill the Universe. His actual finding is wrong because the Ancient Greeks knew little about the Universe. However, in working out his answer, Archimedes learned how to write very large numbers. This is important for scientists. For instance, the volume of the Earth is about $1,000,000,000$, 000,000,000,000,000 cubic centimeters. Scientists write this much more simply, as 1×10^{24} 1 followed by 24 zeroes. This idea is known as standard notation (see page 43).

Math in action
In Syracuse, Archimedes claimed he could move a fully laden ship across the harbor single-handed. He managed it thanks to a compound pulley, which enormously increased the force he could apply. Their secret is that they turn a small force working over a large distance into a large force that works over a small distance.

Using this compound pulley, a force of just 50 newtons (50 N) can lift a weight can lift a weight
of 100 N .

MATH THAT MEASURES

We use measurements every day, from checking the time to buying food and choosing clothes. The idea is always the same-to find out how many units (such as inches or pounds) there are in the thing you want to measure, by using some kind of measuring device.

Measuring up

Anything that can be expressed in numbers can be measured, from the age of the Universe to the mass of your mom. Once you have measurements, you can use them for lots of things, such as building a car or explaining why the Sun shines, and they can play a vital part in forensics to help solve crimes.

Line of attack

 Forensic scientists use all kinds of measurements to get a picture of the crime. The position of evidence is noted and angles are measured to work out the criminal's actions, the paths of moving objects, and whether witnesses could have seen what they claim from where they were standing.
Standard units

Every kind of measurement has at least one unit, usually more. It's vital that everyone knows exactly what these are, so seven basic units, called standard units, have been agreed on internationally (see below). If units are confused, accidents can happen. In 1999, a Mars probe crashed into the planet because it was programmed in metric units, such as meters and kilograms, but the controllers sent instructions in inches and pounds.

Unit name (symbol) Measures

meter (m)	Length
kilogram (kg)	Mass
second (s)	Time
ampere (A)	Electric current
kelvin (K)	Thermodynamic temperature
mole (mol)	Amount of substance
candela (cd)	Luminous intensity

Matching prints
Everyone has different fingerprints. The police can measure the shapes of the lines in a fingerprint found at a crime scene and see if they match the measurements of the fingerprint of a suspect.

Scientific notation
To measure very small or large things, we can either use fractions of metric units, like those above, or special units, like those below. To avoid lots of zeros and save space, large or small numbers are written in scientific notation, which uses powers of 10 . So two million is 2×10^{6}, while one-millionth is 1×10^{-6}

If the shoe fits...

Measuring footprints can reveal more than the wearer's shoe size. The person's height, weight, and whether they were running or walking can be determined too. The pattern of the sole can be compared with suspect's shoes.

Huge units
Astronomical unit $=1.5 \times 10^{11} \mathrm{~m}$ Light-year $=9.46 \times 10^{15} \mathrm{~m}$
Parsec $=3 \times 10^{16} \mathrm{~m}$
Kiloparsec $=3 \times 10^{19} \mathrm{~m}$
Megaparsec $=3 \times 10^{22} \mathrm{~m}$

Our galaxy, the Milky Way is 100,00 light-years, or $10^{21} \mathrm{~m}$, across.

HOW BIG? HOW FAR?

In this high-tech world, full of gizmos and gadgets, you rarely have to figure out anything for yourself anymore. But there's something very satisfying about solving a problem using your wits and a few simple calculations. Here are some interesting tips and challenges to put your mind to.

From hand to foot

Imagine you are washed up on an island with nothing but the clothes on your back and some treasure. You want to bury the treasure so you can explore the island and, with luck, find help. The softest area of sand is some distance from a lone palm tree-how can you measure the distance to the spot so that you know where to find it again? The solution is the world's first measuring instrument, the human body, which is how the Ancient Egyptians and Romans did it. The flaw with this system, of course, is that people come in all shapes and sizes, so measurements are not going to be the same.

Watch the shadow

Have you ever wondered how tall your house or a favorite tree is? On a sunny day, it's easy enough to find out by using your shadow as a guide. The best time to do this is just before the Sun is at an angle of 45° in the sky.

You will need:

- A sunny day
- A tape measure

Step l

On a sunny day, stand in a good spot next to the object you want to measure, with the Sun at your back. Lie on the ground and mark your height-the top of your head and the bottom of your feet.
(8) If you can't wait until the length of your shadow is the same as your height, work out the scale of the shadow in relation to your height-is it half your height, for example? Then you just need to double the measurements.

Step 2

Stand on the mark for your feet and wait. Watch your shadow. When the Sun is at 45° your shadow will equal your height.

Step 3

Rush over to the tall object and measure its shadow, which will also be equal to its height.

Time a storm

There's a thunder storm on the horizon, but how far away is it and is it coming or going? Here's how to find out.

Step l

Watch out for the lightning and listen for thunder. When you see a flash of lightning, start counting the seconds until the thunder rumbles. You can do this using the second hand on your watch, but if you don't have one, just count the seconds.

Step 2

Then take your total number of seconds and divide it by five to get the distance in miles (by three to get the distance in kilometers). So if you count 15 seconds, the storm is 3 miles (5 km) away.

To count seconds without a watch, use a long word to help keep an accurate rhythm. For example, "One Mississippi, two Mississippi.." and so on. Other good Words are chimpanzee and elephant.

Measure the Earth
More than 2,000 years ago, the Ancient Greek mathematician Eratosthenes measured the size of the Earth and got it almost exactly right. Here's how he did it, but this time, see if you can work out the answer.

Step 1

Eratosthenes came across a well in Syene in the south of Egypt where a beam of light shone right down into the well, and reflected back off the water at the bottom, at only one time each year-noon on midsummer's day. He realized this meant the Sun

Step 2

Then Eratosthenes discovered that on midsummer's day in Alexandria in the north of Egypt, the Sun strikes the ground at a slight angle, casting a shadow. Drawing a triangle, he worked out that the angle of the Sun's rays was 7.2°.

Step 3
You know the Earth is round, so imagine two lines, one vertical, the other at an angle of 7.2°, extending to the center of the Earth. You know that a circle has 360°, so divide 360 by 7.2 to find out what fraction this slice is of the whole Earth. If the distance between Syene and Alexandria is 500 miles $(800 \mathrm{~km})$, can you calculate the Earth's circumference?

THE SIZE OF

 There's almost nothing you can't measure,

 from the everyday to the extreme. Here are some scary scales-the Fujita, Torino, and hobo-so you'll know if you should run, duck, or hold your nose!> 0 : Effusive-Kilauea (continuing)
> 1 : Gentle-Stromboli (continuing)
> 2 : Explosive-Mount Sinabung 2010
> 3 : Severe-Soufrière Hills 1995
> 4 : Cataclysmic-Eyjaffallajōkull 2010
> 5 : Paroxysmal-Mount Vesuvius 79 CE
> 6 : Colossal-Krakatoa 1883
> 7 : Super-colossal-Thera C. 1600 BCE

8 : Mega-colossal-Yellowstone 640,000 YEARS AGO

Stubble scale One beard-second is the length a man's beard grows in one second: 5 nanometers $(0.000005 \mathrm{~mm}$). It's such a tiny measurement, it's only used by scientists. high or low in pitch (measured in hertz) as well as loud or soft. Its loudness is related to its power, which is measured in decibels (dB). The softest sound audible to humans is 0 dB , typical speech is $55-65 \mathrm{~dB}$, and a jet engine $100 \mathrm{ft}(30 \mathrm{~m})$ away is 140 dB . Any sound more than 120 dB can damage your hearing.

Twister

The Fujita scale is used to rate the intensity of tornadoes, based on wind speeds and how much damage they cause. An F-0 might damage the chimney, an $\mathrm{F}-3$ will take the roof off, and an $\mathrm{F}-5$ will blow your house away! $\mathrm{N}_{0} \mathrm{O}_{40,72 \text { moh }}$ ($64-116 \mathrm{~km} / \mathrm{h}$-Light damage
 F-4: 207-260 mph ($333-418 \mathrm{~km} / \mathrm{h}$)-Devastating damage F-5 : 261-318 mph $(419-512 \mathrm{~km} / \mathrm{h})$-Incredible dama9e Yellow and orange mean medium risk, so take care. Red and black mean stay at home or you'll cause an avalanche yourself!

SEEING SEQUENCES

Math is the search for patterns-patterns of numbers, of shapes, of anything. Wherever there's any kind of pattern, there is usually something interesting going on, such as a meaning or a structure. A number sequence obeys a rule or pattern-the fun is in figuring out the pattern.

Types of sequences

There are two main types of sequence: arithmetic and geometric. In an arithmetic sequence, the gap between each number (called a "term") is the same, so the sequence $1,2,3,4 \ldots$ is arithmetic (there is a gap of 1 between each term). A geometric sequence is one where there the terms increase or decrease by a fixed ratio, for example $1,2,4,8,16 \ldots$ (the number double each time), is a geometric sequence.

ACTIVITY

What's the pattern?

Can you see the pattern in the sequences below and figure out what the next term will be for each one?
A $1,100,10,000 \ldots$
E $11,9,12,8,13,7$...
B $3,7,11,15,19$...
F $1,2,4,7,11,16$..
C $64,32,16 \ldots$
G $1,3,6,10,15$..
D $1,4,9,16,25,36$..
H $2,6,12,20,30$.

What comes next?

Figuring out the pattern of a sequence is useful because you can then see what's going to come next. For example, Thomas Malthus, a 19th-century economist, decided that the amount of food grown on Earth increased over time in an arithmetic sequence. Population, however, increases geometrically. Malthus decided this meant that food supply could not keep up with population, so if things continued this way, one day we would run out of food.

In 1965, a computer company expert, Gordon E. Moore, predicted that the power of computers would double every two years. He was right!

1, Fibonacci sequence

One of the best-known number patterns is the Fibonacci sequence, named after the Italian mathematician who found it. Each number in the sequence is the sum of the two previous numbers. This pattern is found everywhere in nature, and particularly plants, in the number of petals on flowers, the arrangement of seeds, and the branching of trees.

The golden ratio The Fibonacci sequence is also linked to another mysterious
 number-approximately 1.618034—known as phi, or the golden ratio. A ratio is a relationship between two numbers. A ratio of $2: 1$ means the first number is twice as big as the second one. If you divide any number in the Fibonacci sequence by the one before it, you get a number close to phi. Some artists, including Leonardo da Vinci, believed phi had magical qualities and designed their paintings based on the proportions of the golden ratio.

MAGIC SCUARES

One day, more than 4,000 years ago, Emperor Yu of China found a turtle in the Yellow River. Its shell was made up of nine squares, each with a number from 1 to 9 written on it. Stranger still, the sum of any row, column, or diagonal in this 3×3 square was 15 . It was the world's first magic square.

Adaptable square

In this magic square, the numbers in the rows, columns, and diagonals add up to the magic number of 22 . However, you can reset the magic number by simply adding to or taking away from the numbers in the white boxes. Try adding 1 to each white box number, for example-the magic number will become 23 .

A knight's tour

In the game of chess, a knight can move only in an L shape, as shown below for the moves from 1 to 2 to 3 . Follow the full knight's tour around this magic square, visiting each position just once. On an 8×8 square, there are $26,534,728,821,064$ possible tours that take the knight back to the square on which he began. So take an empty grid and find some more routes yourself.

Your own magic square

Make a magic square using knight's-tour moves. Place a
1 anywhere in the bottom row, then move like a knight, in an L, through the other squares to place the numbers $2,3,4$, and so on, following these rules:

- Move two squares up and one to the right if you can.
- If the square you reach is already full, write your number on the square directly beneath the last number instead.
- Imagine the square wraps around so the top meets the bottom and the two sides meet-if you move off one edge of the square, re-enter on the other side.

So, on this example, from the 3 you move up and right to the second bottom-left square to place a 4 . After placing the 5 , the L move takes you to the square already occupied by 1, so place the 6 directly below 5 instead. Continue in this way to fill the grid.

Move up two and cross over to the bottom right

This move has come from the 3 , top right. This move is 5 , but since the square is

MTSSING NUMBERS

Number games such as Sudoku, Sujiko, and Kakuro are great for exercising the brain. These puzzles are all about logical thinking and some arithmetic. To find the numbers you're looking for, you need to use your powers of deduction.

Sujiko

In a Sujiko puzzle, the number in each circle is the sum of the numbers in the four surrounding squares. Using the numbers 1-9 only once, work out the arrangement of numbers needed to fill in the blank squares.

Here's how

Over to you...

((2)
You must do this using the numbers 1-9 only once. We've completed one here to show you how it works. Now try to fill in the grid above yourself.

Look at the number 14 in the bottom left circle. To reach a total of 14 , the sum of the empty squares must also total 7, so which other combinations are there?

Kakuro

A Kakuro puzzle is a little like a crossword puzzle, except with numbers. Fill in the blank squares with the numbers 1-9. They can appear more than once. The numbers must add up to the total shown either above the column or to the side of the row.

What to do			
	1.5	7	B
		6	\uparrow
	2	3	,
	1	5	

Now try this

Gauss was born in this house in Brunswick, Germany. His parents were very poor, so his education was paid for by the Duke of Brunswick.

Early life

Gauss was born in 1777, the only child of poor, uneducated parents. From an early age, it was clear that Gauss was a child prodigy with an extraordinary talent for mathematics. When he was just three years old, he spotted a mistake in his father's accounts. Later, Gauss amazed his teacher at school by coming up with his own way to add a long series of numbers.

Gauss wanted his greatest discovery, the 17-sided hepttadecragon, carved on his tombstone, but the stonemason refused, telling him it would look just like a circle.

Karl

 GaussMany people consider Gauss to be the greatest mathematician ever. He made breakthroughs in many areas of math, including statistics, algebra, and number theory, and he used his skills to make many discoveries in physics. Gauss was also exceptionally good at mental arithmetic, even at a young age.

Proving the impossible Gauss was gifted at both math and languages, and when he was 19, he had to decide which to study. He settled on math after completing the supposedly impossible mathematical task of drawing a regular 17 -sided shape (a heptadecagon) using only a ruler and a compass. His discovery led to a new branch of math.
notes from as mathematical notes from a letter he wrote in
July 1800 to Johann Hellwig, math professor at Brunswick's military academy

The lost planet In 1801, the dwarf planet Ceres was discovered, but astronomers lost track of it after it passed behind the Sun. Gauss used his math skills to locate Ceres. From the few observations that had been made before it disappeared, Gauss was able to predict where it would appear next. He was right!

Cool curve

When a set of information, such as the heights of a group of people, is plotted on a bar graph (see page 102), it commonly takes the shape of a particular curve. At either end of the graph are the shortest and tallest people, with most people in the middle. Gauss was the first to identify this curve, calling it a bell curve. It can be used to analyze data, design experiments, work out errors, and make predictions.

This German 10 -euro note featured a portrait of Gauss and a bell curve

INFINITY

Almost everyone finds it difficult to grasp the meaning of infinity. It's like an endless corridor that goes on forever without any end or limits. But infinity is a useful idea in mathematics. Many sequences and series go on to infinity and so do the numbers you count with. It's like saying that there's no largest number, because whatever number you think

The infinity symbol was invented in 1655 . It refers to something that has no beginning or end.

Is infinity real?
Just because infinity is useful in math, it

Properties of infinity
Although infinity is not really a number, it can be
thought of as the limit, or end, of a series of numbers.

Try exploring the math of infinity on a calculator. Divide 1 by larger and larger numbers and see what happens. What do you think you would get if you could divide by an infinitely large number?

Infinite imagery

The Dutch artist Maurits Cornelis Escher (1898-1972) often used the idea of infinity in his strange and beautiful graphics. Many of his works feature interlocking repeated images. In this piece, there are no gaps at all between the lizards, which retreat into infinity in the center. Art is one way of coming to grips with the meaning of infinity.

Infinite math

The infinity symbol looks like an 8 on its side. However, the infinity symbol isn't used to represent the idea of infinity in sequences. Instead, infinite sequences of numbers are written with three dots at the end. For example, the numbers you count with are $1,2,3, \ldots$ Other sequences might have no beginning and no end. For example: ... $-2,-1,0,1,2$,

 mind-boggling calculations and your friends will be convinced you're either a magician or a genius.

Guess a birthday

Let the math do all the work for you with this trick to reveal a friend's date of birth.

Step l

Hand your friend a calculator and
ask her to do the following:

- Add 18 to her birth month
- Multiply the answer by 25
- Subtract 333
- Multiply the answer by 8
- Subtract 554
- Divide the answer by 2
- Add her birth date day
- Multiply the answer by 5
- Add 692
- Multiply the answer by 20
- Add only the last two digits of her birth year

Step 2

Build up suspense and then ask her to subtract 32940 . The answer will be her birthday!

Kaprekar's Constant

Tell a friend that, by following one simple magic formula, you can turn any four-digit number into 6174 in seven steps or fewer.

Step l

Get your friend to write down any four-digit number that has at least two different numbers, so 1744 is fine, but 5555 is not.

Step ?

Tell her to put the digits in ascending and descending order. So, 1744 would give 1447 and 7441. Instruct her to subtract the small number from the large number. If the answer isn't 6174, repeat the last two steps using the answer of the first calculation. Within seven tries, she will end up with 6174.

PUZZLING PRIMES

Of all of the numbers that exist，primes are the ones that mathematicians love most． That＇s because prime numbers have special properties．A prime is a number that can be divided into whole numbers only by itself and the number 1 ．So 4 is not a prime，because it can be divided by 2 ．However， 3 is a prime because no numbers can be divided into it except for itself and 1.

The search continues

There is no known method for discovering primes．Each new one is more difficult to find than the last． It＇s not often that math makes the headlines，but when a new prime number is found，it＇s big news．In 1991， the tiny country of Liechtenstein even issued a stamp to mark the discovery of a new prime number．

31
331 3ヨコ」

ACTIVITY

Sifting for primes Large prime numbers can be found only by computers．However，in about 300 cev，how to mathematician Eratosthenes＂sieve＂system． find small ones by using this sieve syste．
（2）Draw a 10×10 grid and fill it with the numbers 1 to 100 ．Cross out the number 1 ， which is not classified as a prime number．
（2）The next number is 2 ．There is no number except 1 that can divide into it，so it is a prime． Circle it．
（2）Any number that can be produced by multiplying by 2 cannot be a prime．So，except for the number 2 itself，cross out all the multiples of 2 ．
（0）The next number is 3 ．There is no number except 1 that can divide into it，so it＇s a prime． Circle it．Again，any number that can be produced by multiplying by 3 cannot be a prime，so cross out all the numbers that are multiples of 3 ， except for the number 3 itself．
（2）You should have already crossed out all the multiples of 4 when you crossed out the multiples of 2 ．Now cross out all multiples of 5 and 7 （again，except for themselves）．
© All of the remaining numbers are primes．

1	2	3	4	5	6	7	a	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	73	74	95	76	77	78	97	100

ACTIVITY

Find the factors

Prime numbers are the building blocks from which other numbers can be made. For instance, 6 can be made by multiplying 2 and 3 , so 2 and 3 are called the "prime factors" of 6 . Can you find the answers to these prime factor puzzles?

Step l

There is a number between 30 and 40 with prime factors between 4 and 10 . What is the number and its prime factors? To answer this, start by finding the prime numbers between 4 and 10 . Now multiply these numbers together to find their products (the answer when two numbers are multiplied together). You'll find there is only one product between 30 and 40 .

Step ?

Now find a number between 40 and 60 that has prime factors between 4 and 12 . What are its factors?

Crafty cicadas

Prime numbers are even used in nature, in particular by an insect called a cicada. Some species of cicadas live underground as larvae for 13 or 17 years, after which time they emerge as adults to mate. Both 13 and 17 are prime numbers, which means the cicadas are more likely to avoid predators with life cycles of two, three, four, or five years, and therefore stand a better chance of living to see another day.

ACTIVITY

Prime cube

Write the numbers 1-9 into the squares of a 3×3 grid so that each row and column adds up to a prime number. It does not have to be the same prime number each time. We have given you some numbers to start you off, but there are 16 different solutions. How many can you find?

2		
		9
7		

Prime busting

Multiplying two big prime numbers together is relatively easy with the help of a good computer. The result is called a semiprime. But start with a semiprime and try to work backward to find its prime factors, and you're in trouble! It's an almost impossible task. For this reason, primes are used to change messages into nearly unbreakable codes-a process called encryption-to protect banking details and the privacy of e-mails.

The 3-D graphics used in films and computer games are created using triangles.

Super-strong!

If you make a square from four rods, it can easily be forced into a diamond shape. The same is true of pentagons and hexagons-they are easily pushed or pulled out of shape. A triangle of rods, on the other hand, cannot be forced into a different shape without breaking the rods or the joints. This strength is one reason why you'll find triangles used in buildings and bridges.

Trees and triangles

You can use a right-angled triangle to figure out the height of a tree without climbing it. Work out where you need to place a stick on the ground that would point directly at the top of the tree at an angle of 45°. The distance along the ground between the stick and the tree will then be the same as the height of the tree. If the angle between the stick and the ground is greater than 45°, then the tree would squash you if it fell.

Hipparchus

The Ancient Greek astronomer and
mathematician Hipparchus (c. 190
used triangles to help him figure out the measurements of many objects He didn't stick to just earthly objects, though - he used triangles to work out the distance and size of the Sun and the Moon!

Measuring areas

You can use triangles to measure the area of any shape that has straight lines. Here's how to do it

Step l

Split the area of this shape into right triangles. We have marked the dimensions you need to know.

Step 2
A right triangle is
simply half a rectangle.
So work out the area of
each shape as a rectangle,
3 then halve it. So:
$3 \times 7=21$
$21 \div 2=10.5$

Step 3

Repeat this process for the other triangles, and add them together to get the total area.

SHAPING UP

The study of shapes is one of the most ancient areas of math. The Ancient Egyptians learned enough about them to build pyramids, measure land, and study the stars. But it was the Ancient Greeks who really came to grips with shapes and discovered many of the ideas and rules that we learn about today.

All four sides

Any shape with four straight sides is called a quadrilateral, and there are connections between them. For example, a square is a type of rectangle, and a rectangle is a type of parallelogram.

Square
When all sides are equal and all corners are right angles, it's a square.

Rectangle
A shape with four right angles and two pairs of opposite sides of equal length.

Rhombus
If all sides are equal, but there are no right angles it's a rhombus.

Trapezium
A quadrilateral with
one pair of parallel sides of different lengths.

This shape has two pairs of adjacent sides of equal length Opposite sides are not equal.

Parallelogram
A shape that has opposite sides equal in length and parallel to each other.

> The math of shapes is called grometry, from the Ancient Greek Words for "Earth measuring."

Seeing symmetry

Many shapes have a quality called symmetry. There are two types-lateral and rotational. If a shape can be folded so that both halves are identical, it has lateral symmetry. If a shape looks the same when you turn it part-way around a central point, it has rotational symmetry. This shapely quality is important in both math and science.

Lateral line

The line down the middle of a symmetrical shape is called the axis of symmetry. A butterfly has one axis of symmetry.

Turning point
If you turn the book upside down, you'll see that this swirl has rotational symmetry, because it looks exactly the same the other way up.

Shapes in nature Regular shapes and symmetry can be found in the natural world. Most animals have an axis of symmetry and most plants have rotational symmetry. These shapes are partly due to the way living things grow, but can also be useful for the way they live.

Bees build honeycombs using hexagonal cells because this shape uses the least wax.

Animals with an odd number of limbs are rare but a starfish has five. As a result, it has five axes of lateral symmetry, as well as rotational symmetry.

The perfect pattern of spider webs is the most efficient way to build a large trap as quickly as possible.

Snowflakes are made of hexagon-shaped crystals, which is why they all have six arms.

SHAPE SHIFTING

The puzzles on these pages are designed to exercise your brain's sense of 2-D shapes. There are shapes within shapes to find, and others to cut up and create. You'll have square eyes by the end!

Tantalizing tangrams

You can use small shapes to make an endless variety of others. In China, people used this fact to create the game of tangrams. Using just seven shapes, you can make hundreds of different designs.

Triangle tally

Take a good look at this pyramid of triangles, and what do you see? Lots of triangles, that's for sure, but do you know how many? You will need to concentrate hard to count all the triangles within triangles-things are not always as simple as they appear!

You will need:

- Square piece of paper
- Scissors
- Colored pens or pencils

Step 1

Using the tangram at left as a guide, draw a square on a piece of paper and divide it into seven individual shapes. Color and cut out each shape.

Step 2

Practice making pictures by rearranging the colored pieces to create this rabbit.

Step 3

Now try making these images. We haven't shown you the different colors of the pieces to make things trickier. Then have fun creating your own designs.

Shapes within shapes

These shapes can be split into equal pieces. To give you a head start, the first shapes are divided already.

Boxed in

These matchstick puzzles are a great way to exercise your lateral thinking. If you don't have matchsticks, use toothpicks instead.

Square thinking
This square has been divided into four, but how would you divide it into five identical pieces? You need to think laterally.

Dividing the L

This L shape has also been cut up into three identical pieces, but can you divide it into four identical shapes? The clue is in the shape itself. How about about six identical pieces?

Dare to be square

The challenge here is to draw the grids below not using a series of lines, but using squares-and the least number possible. The good news is that the first one has been done for you. The bad news is that they get trickier and trickier.

Puzzle 2 Lay out 12 matches as shown. Can you move just two matches to make seven squares?

Here's how
You can draw this 2×2 grid using just 3 squares, shown here in red.

Go it alone
Now try drawing this 3×3 grid using just 4 squares.

4×4 challenge What is the fewest number of squares needed for this grid?

Look around you and you'll see circles everywhere-coins, wheels, even your dinner plate! A circle is a great shape and looks so simple, but try to draw one and you'll discover it has curious qualities.

THE THIRD DIMENSION

The three dimensions of space are length, width, and height, and describing 3-D shapes is an important area of math. Every object has its shape for a reason, so understanding shapes helps us understand natural objects, and also design artificial ones.

Building shapes

Some regular 3-D shapes, such as pyramids, can be made by putting 2-D shapes together. In other cases, $3-D$ shapes like bricks are used to build $3-D$ shapes like houses. Understanding the math involved helps manufacturers or builders figure out the best way to create their designs.

Oval egg

Pear-shaped egg

Perfectly egg-shaped

Eggs are approximately spherical, so they are easy for birds to lay and sit on. This shape also uses less shell than a cube-shaped egg would. But there are a great variety of egg shapes, depending on where the bird nests. Birds that nest in trees, where they are safe, lay very round eggs. Birds that nest on cliff ledges have extra-pointy eggs that roll in circles if they are knocked, rather than off the edge.

Constructing cubes

To solve this puzzle, you need to picture the pieces in your head, and then rotate them to find the pairs that fit together to make a cube. But there are nine pieces, so there's one shape too many. What are the pairs and which is the shape that will be left over?

3-D SHAPE

Getting your head around these $3-\mathrm{D}$ shapes is a great workout for the brain, especially since you are looking at them in 2-D. How much easier it would be if you could hold them in your hands to fit them together or fold them!

Boxing up

The net of a 3-D shape is what it would look like if it was opened up flat. These are the nets of six cubes-or are they? In fact, one net is wrong and will not fold up to make a cube. Can you figure out which one it is?

Hexagonal pyramid

Pentagonal pyramid

Pentagonal prism

Face recognition

Each of these 3-D shapes is made up of different 2-D shapes. Your challenge is to line up the seven shapes so that each one shares a 2-D shape with the 3-D shape that follows it. So, for example, a cube can be followed by a square pyramid, because they both contain a 2-D square. The faces do not have to be the same size.

Cube

Triangular prism

Square pyramid

Trace a trail
Can you follow all the edges of these $3-D$ shapes without going over the same line twice? Try drawing each of the shapes without lifting your pen. You'll only be able to do this for one shape, but which is it? And can you figure out why?

Building blocks

Using the single cube as a guide, can you visualize how many would fit into each of the larger 3-D shapes? If the the single cube represents 1 cubic centimeter $\left(\mathrm{cm}^{3}\right)$, what is the volume of each shape?

$3-D$
 FUN

Tough eggs

The dome is a popular shape for buildings because it can support a surprisingly large weight, as this egg-speriment proves.

You will need:

- Four eggs
- Clear tape
- Pencil
- Scissors
- A stack of heavy books

Step 2
Stick clear tape around the middle of the egg. Draw a line around the widest part and ask an adult to score it with scissors.

Step 3

Gently break off pieces of the shell from the pointy end to the line, then use the scissors to snip around the line. If the shell beyond the line cracks, start again. Prepare three more eggs this way.

Carefully tap the pointy end of an egg on a hard surface to break the shell. The rest of the egg must be unbroken. Pour out the contents of the egg.

Step 4

Set out your four eggs in a rectangular shape. Carefully place a stack of heavy books on top of the shells. How many books can you add before the eggshells crack?

Explore the remarkable strength of egg-shaped domes, and turn 2-D pieces of paper into 3-D objects with a little cutting and folding.

Tetrahedron
 trick

Create a tetrahedron from an envelope in a few simple steps.

You will need:

- Envelope
- Pencil
- Scissors
- Clear tape

Step 2

Fold down one corner until it touches the center fold. Make a mark at this point.

Step 4 Using the smaller part of the envelope, fold it from the mark to each corner, creasing the fold on both sides.

Fold a cube

Here's how to transform a flat piece of paper into a solid cube To make a water bomb, fill it with water through the hole in the top!

You will need:

- Pencil
- Square of paper
 Fold points 1 and 2 onto 3 , A to A, and B to B, so the paper becomes

Fold neatly to Fold neatly to
create a triangle

Step 1 Fold the paper in half along both diagonals. Then unfold and turn over

Step 2 Now fold the
paper in half along both horizontals. as shown.

Step 4
Fold the two outside points
of the triangle
back to reach

Step ?
Fold down the top edges and tuck them into the triangular pockets. Turn over and repeat steps 6 and 7 .

As soon as you start to blow, the
Make sure the
corners and
edges are flush

Walk through paper

Tell your friends that you can walk through paper. They won't believe you, but here is the secret...

You will need:

- Pencil
- Sheet of letter-
sized paper
- Scissors

Step 1
Draw this pattern onto the sheet of paper and cut along the lines.

Step B Gently pull the edges out and blow into the hole in one end to create a cube.

Leonhard Euler

Leonhard Euler was an extraordinary man whose knowledge included many apects of math and physics. He developed new ideas, which were used to explain, for example, the movement of many different objects-from sailing ships to planets. Euler had a particular gift of being able to "see" the answer to problems. During his life, he published more papers on math than anyone else-and could also recite a 10,000line poem from memory.

Euler's rule

Long ago, the Ancient Greeks discovered five regular shapes called Platonic solids. Two thousand years later, Euler found that they obey a simple rule: The number of corners plus the number of faces minus the edges always equals 2 .

The Academy of Science in St. Petersburg was set up to improve Russian education and science, so that the country could compete academically with the rest of Europe.

On the move

In the 1730s, Russia was a violent and dangerous place, and Euler retreated into the world of math In 1741, he moved to the Berlin Academy of Science to try his hand at philosophy - but he did so badly that he was replaced. When Catherine I of Russia offered him the directorship of the St. Petersburg Academy in 1766 . Euler accepted and spent the rest of his life in Russia

Euler was pictured on the Swiss 10 -franc banknote and on many Swiss, German, and Russian postage stamps.

The old Prussian city of Königsberg i now called Kalingrad, in Russia, and its seven bridges are now five.

The Prussian problem

In 1735, Euler put forward an answer to the so-called Königsberg bridge problem. The city's River Pregel contained two islands that could be reached by seven bridges. Was there a route around the city that crossed each bridge only once? Instead of using trial and error, Euler found a way to answer the question that gave rise to a new area of math called graph theory. His answer was that no

A life of genius

Half blind for much of his life, Euler lost his sight completely soon after his return to St. Petersburg. He was so brilliant at mental arithmetic, however, that this had no effect on his work. When Euler was 60 years old, he was awarded a prize for working out how the gravities of the Earth, Sun, and Moon affect each other On the day he died, September 18, 1783, Euler was working out the laws of motion of hot-air balloons.
such route was possible.

AMAZING MAZES

The world's largest maze was opened in the town of Fontanellato, Italy, in 2012. The bamboo-hedge design - is based on mazes shown in Roman mosaics.
 solved using the one-hand rule (see top of page). You'll just end up going around and around in circles. Instead, you have to try and memorize your route, or leave a trail to show which paths you've been down.
People have been fascinated by mazes for thousands of years. One of the most famous is the mythical Greek labyrinth of Crete, which had a monster lurking inside. Mathematicians in particular have always loved exploring mazes, for working out solutions to seemingly hard problems, and of course for fun.

Complex mazes

Make a Cretan maze

Created more than 3,200 years ago, the Cretan labyrinth was a very simple unicursal (one-path) maze. You couldn't get lost, but you never knew what lay around the next bend. Here's how to draw your own:

Step 1
Draw a cross and four dots between the arms. Next, join the top of the cross to the top left dot, as shown.

Step 2 Join the top right dot to the right-hand arm of the cross, going around your curved line from step 1.

Step 3 Join the left arm of the cross to the bottom left dot, going around the bottom right dot and enclosing all the lines you have drawn.

Step 4 Join the remaining dot to the bottom of the cross, enclosing all the lines you have drawnand you're done!

Mazes as networks

It is possible to turn a complex maze into a simple diagram, called a network. Marking only the junction points and dead ends and linking these with short lines reveals the direct route through the maze.

Mark every junction and every dead end in the maze, and give each a different letter, as shown above. The order of the letters doesn't matter. Join the points with lines to show all possible routes.

Step ?

Write down the letters and join them with short lines to get a diagram of the maze in its simplest form. Maps of underground train systems are usually laid out like this, making routes easier to plan.

Electronic networks

Network diagrams have many uses. In

Weave maze

Seen from above, this mind-bending puzzle resembles a 3-D maze. Passages weave under and over each other, like tunnels or bridges. Although a passage never ends under or over another path, you still need to watch out for dead ends in other parts of the maze.

Perspective play Looking down a path going into the distance, we assume that people or objects will appear smaller as they move farther away. In this photo, your brain interprets the person farthest away as a giantess, compared to the figures behind her. In reality, all three images are the same size.

OPTICAL

 ILLUSIONSThe brain uses visual evidence from the eyes to figure out what we're seeing. To do this, it uses all kinds of clues, such as colors and shapes. By making pictures with misleading clues, the brain can be tricked.

Filling in the gaps
We rarely see the whole of an object-usually, parts are obscured and the brain guesses what we're seeing and fills in the missing sections. Here, the brain fills things in to show you a white triangle that isn't really there.

Bigger or smaller?

Your brain tries to recognize shapes. In the image above, your brain thinks you are looking at three rectangular sections of a wall from an angle. Taking the wall as a clue, the yellow bar on the right must surely be farther away than
the one on the left? It must also be longer, since it spans the whole wall. But try measuring both..

IMPOSSIBLE SHAPES

When we look at an object, each eye sees a 2-D image, which the brain puts together to make a 3-D image. But sometimes, the 2-D images can trick the brain, which then comes up with the wrong answer, and we "see" impossible objects.

Freaky fence

Cover first one post, and then the other. Both images make sense. View the whole image together, however, and the shape is impossible. Pictures such as this one are made by combining pairs of images, where each is taken from a different angle.

The international recycling symbol, symbolizing an endless cycle, is based on the Möbius strip.

Crazy crate

 Sometimes, an impossible object can be turned into a possible one by making a simple change. This crate would make perfect sense if you redrew the upright bar, seen here to the left of the man, so that it passed behind the horizontal bar at the front.

Fantasy fork

The three prongs of this fork make no sense if you follow them up to see how they meet at the top. But cover the top or bottom half of it, and both ends look fine. The illusion works because there is no background. If you tried coloring in the background, you would get really confused!

Impossible?

Although this shape looks as strange as the others on this page, it is actually the only one that really exists-and it does not need to be viewed from a particular angle, either. Can you figure out how it's made? There's a clue somewhere on this page.
Mathematicians don't just study real shapes and spaces, they are also able to explore imaginary worlds in which space and geometry are different.

Strange strip

The Möbius strip, discovered in 1858, is a most unusual shape.
For a start, it has only one surface and one edge. Don't believe it? Make a strip for yourself and then run a highlighter along an outside edge and see what happens.

Step 1

All you need to create a Möbius strip is paper and glue or tape. Cut a long strip of paper. It should be about 12 in (30 cm) long and $1.5 \mathrm{in}(3 \mathrm{~cm})$ wide.

Step 3
To see if the strip really does have only one surface, draw a line along the center of the strip. Now cut along this line-you may be surprised by the result.

 International Date Line from west to east, you move ahead one day.
The clocks show how many hours behind or ahead of Greenwich, England, each time zone is.

Everyone knows what time is, but try putting it into words. Whatever it is, we use time for all kinds of things, from boiling an egg or catching a bus to knowing when to blow the whistle at a soccer game. Extra time, anyone?

Dividing time
The Egyptians were the first to divide the day into 24 hours, but their hours were not all the same length. To make sure that there were always 12 hours from sunrise to sunset, they made the hours longer during summer days and winter nights.

Lengths of time

- Millennium (1,000 years)
- Century (100 years)
- Decade (10 Years)
- Leap year (366 days)
- Year (365 days)
- Month (28, 29, 30, or 31 days)
- Lunar month (about 29.5 days)
- Fortnight (14 days)
- Week (7 days)
- Day (24 hours)
- Hour (60 minutes)
- Minute (60 seconds)
- Second (basic unit of time)
- Millisecond (thousandth of a second)
- Microsecond (millionth of a second)
- Nanosecond (billionth of a second)

Natural units

Although exact times are based on the second, we also use three units based on natural events:

- A day is one rotation of the Earth on its axis.
- A lunar month is one full cycle of the Moon.
- A year is the time it takes Earth to orbit the Sun.

Crossing continents Russia stretches from Europe to Asia and crosses 9 time zones.

The poles
Time zones meet at the North and South Poles. By walking around the points of the poles, you can travel through all the time zones in a few seconds.

Time zones

The world is divided into 24 time zones, with the time in each zone measured in hours ahead of or behind the Greenwich Meridian. This is the imaginary line at 0° longitude that joins the North and South Poles and passes through Greenwich, England. On the opposite side of the Earth, at 180° longitude, is the International Date Line. This imaginary line separates two different calendar days.

E

Isaac Newton

Early life
Newton was born in 1643, three months after his father's death. Sickly and undersized (small enough to "fit into a quart pot"), the baby Newton was not expected to survive. When he was three, his mother remarried and left him to live with her parents. At 18, Newton went to Cambridge University, but in 1665 it was closed because of the plague so he returned home. Over the next two years, Newton produced some of his best work.

Today, all scientific research relies on math to solve problems and even to suggest new theories. The first scientist to properly use math in this way was Isaac Newton. His books on motion and optics (the science of light) transformed science by revealing how we can understand the workings of the universe through the use of math.

PHILOSOPHIE

 naturalis PRINCIPIA When Newton passed rays through a prism la triangular glass block), he discovered that white light is made up of all the colors of the rainbow.
Seeing the light

Newton explored the nature of light and worked out many laws of optics. In 1671, he built the first reflecting telescope. This uses a curved mirror to make stars and planets appear closer and brighter. Most of the world's largest telescopes today use the same system.

MATHEMATICA.

\qquad

Complex character

Newton was a genius. Not only did he establish many laws of physicshe also invented a new branch of math called calculus (math that studies changing quantities). However, Newton wasted a lot of time on alchemy-the search for a recipe that would turn base metals, such as lead, into gold. He could also be an unforgiving man. He had a lifelong falling-out with British scientist Robert Hooke about optics, and a bitter dispute with German mathematician Leibniz over who had invented calculus.

> Newton was famously absentminded. He was once found boiling his watch with an egg in his hand!

At the Royal Mint, Newton introduced coins with milled (patterned) edges, to make
them harder to forge.

Sir Isaac Newton

In 1696, Newton was appointed warden of the Royal Mint, where Britain's money is made. At that time, coins were made of gold and silver. People would snip valuable metal from the edges of coins, or make fake coins out of cheap metal. Newton found ways to make both of these practices more difficult. He also tracked down counterfeiters-even disguising himself as one to do so. In 1705, Queen Anne made Newton a knight in gratitude for his work at the mint. When the great scientist died in 1727, he was buried in Westminster Abbey, London, among England's kings and queens.

PROBABILITY

Probability is the branch of math that deals with the chance that something will happen. Mathematicians express probability using a number from zero to one. A probability of zero means that something definitely won't happen, while a probability of one means that it definitely will. Anything in-between is something that may happen and can be calculated as a fraction or percentage of one.

What are the chances?

Working out chances is quite simple. First, you need to count the number of possible outcomes. The chance of throwing a die and getting a four is one in $\operatorname{six}(1 / 6)$, because there are six ways for the die to fall, just one of which is the four. The chances of throwing an odd number (1, 3, or 5) is one in two $(3 / 6=1 / 2)$ or 50 percent.

How chance adds up

The chance of a tossed coin being a head is $1 / 2$ (one in two). The chances of a head then a tail is $1 / 2 \times 1 / 2=1 / 4$. The chances of a head then another head (which can be written HH to save space) is also $1 / 4$. The chances of three tails in a row (TTT) is $1 / 2 \times 1 / 2 \times 1 / 2=1 / 8$.

1st toss	2nd toss	3rd toss
		$1 / 2 \quad H$
	$1 / 2 \quad H$	$1 / 2 \quad$ T
		$1 / 2 \quad H$
$1 / 2 \quad H$		$1 / 2 \quad$ T
$\begin{array}{ll} 1 / 2 & \mathbf{T} \end{array}$		$1 / 2 \quad H$
	$1 / 2.1$	$1 / 2$
		T
	$1 / 2 \quad$ T	$1 / 2 \quad H$
		$1 / 2 \quad$ T

chance: $1 / 2$ chance: $1 / 4$ chance: $1 / 8$

But don't risk it! It's tempting to think that if you have tossed four heads in a row, the next toss is more likely to be a head. But it's equally likely to be a tail: The chance of HHHHT is $1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2=1 / 32$, and the chance of HHHHH is exactly the same.

The house always wins Ever wondered how casinos make money? They make sure the chances of winning are stacked in their favor. Casino games give the "house" Ithe casino itse(f) a statistical edge that means it wins more often than it loses. For example, if you bet on a number in a game of roulette, you have a 1 in 36 chance of winning. But a roulette wheel also has a 37th space for zero. This ultimately gives the casino an advantage. It will win more games than it loses, since it doesn't pay anyone if the ball lands on the zero. It's this zero that gives the house its "edge.

> The chance of a shuffled pack of cards being in the right order is less than one in a trillion trillion trillion trillion trillion.

Predictions

Using probability, you can try to predict or forecast things that are going to happen. For example, imagine you have a bag containing five red balls, six blue balls, and seven yellow balls. What color ball are you most likely to pull out-red, blue, or yellow? The answer is yellow because there are more yellow balls in the bag, so the probability is higher for this color. Predictions aren't always correct. You could pull out a red or blue ball-it's just less likely to happen.

What are the odds?
Sometimes our brain misleads us. We can be influenced by things that aren't really true. For example, books and blockbuster films lead us to believe that sharks are very dangerous to humans. In reality, however, more people are killed by hippos than sharks. Try putting these causes of death in order of probability:
(0) Computer game exhaustion
(Q) Snake bite
© Hippo attack
© Walking into a lamppost
(2) Falling down a manhole
© Playing soccer
(ब) Hit by a falling coconut
© Struck by lightning
(0) Hit by a meteorite
© Shark attack

DISPLAYING D A TA

When you want to know what's going on in the world, you need the facts-or data. This will often be in the form of a lot of numbers that don't tell you much at first, but present them in the right way and you'll get the picture. Here's the latest data on superhero activity...

Graphic picture
Using a line graph to plot data over time-like the number of crimes in your city-it's easy to spot those times when villains are in town. And if a superhero can find a pattern, it makes the job a lot easier!

A crime tally

It can be tough for a superhero to decide which villain to tackle first. A simple tally of their evil deeds is a great way to see at a glance who's the worst threat to the city.

Numero

HT H H H H III

Pi Man

LOGIC PUZZLES AND PARADOXES

To solve these puzzles, you need to think carefully. This area of math is called logic-you get the answer by working through the problem, step by step. But watch out, one puzzle here is a paradox, a statement that seems to be absurd or to contradict itself.

Logical square

Each of the colored squares below contains a different hidden number from 1-8. Using the clues, can you work out which number goes where?

Black or white?

Amy, Beth, and Claire are wearing hats, which they know are either black or white. They also know that not all three are white. Amy can see Beth and Claire's hats, Beth can see Amy and Claire's, and Claire is blindfolded. Each is asked in turn if they know the color of their own hat. The answers are: Amy-no, Beth-no, and Claire-yes. What color is Claire's hat, and how does she know?

- The numbers in the dark blue and dark green squares add up to 3 .
- The number in the red square is even.
- The number in the red square and the number below it add up to 10 .
- The number in the light green square is twice the number in the dark green square.
- The sum of the numbers in the last column is 11 and their difference is 1 .
- The number in the orange square is odd.
- The numbers in the yellow and light green squares add up to one of the numbers in the bottom row.
2

3 1

A barber's dilemma

A village barber cuts the hair of everybody who doesn't cut their own. But who cuts his hair?

- If he does, then he is one of those people who cuts their own hair.
- But he doesn't cut the hair of people who cut their own hair. So he doesn't cut his own hair.
- But he is the man who cuts the hair of everyone who doesn't cut their own hair.
- So he does cut his hair... which takes us back to the start again.

People with pets

Four friends each have a pet. There's a cat, a fish, a dog, and a parrot. The pets' names are Nibbles, Buttons, Snappy, and Goldy. From what the friends are saying below, can you figure out who has which pet, and the names of each animal?

Cat

Fish

Dog
Parrot

I'm allergic to fur, so my pet doesn't have any, and my pet has the second shortest name of the four.

Anna

Bob

My pet isn't a goldfish or a dog. but it is named Nibbles.

Lost at sea
It's a foggy gray day at sea and, viewed from the air, you can only make out some empty blue water and parts of ships. Can you find out where the rest of the fleet is located? Every ship is surrounded on all sides by squares of empty water.

Fleet:
6 Dinghies:

4 Yachts:

British prime minister Winston Churchill once said that Turing's work shortened World War II by two years.

Alan

Turing
It was Alan Turing's brilliant mathematical mind that helped the Allies win World War II by developing new types of code-breaking machines. He then went on to build some of the world's first computers, and was a pioneer in the development of intelligent machines, the science we now call artificial intelligence.

Early life
Turing was born in London on June 23, 1912. His father worked as a civil servant in India, and not long afterward his parents returned there, leaving Turing and his older brother in the care of family friends in England. As a boy, Turing excelled at math and science. At the age of 16 , he came across the work of the great scientist Albert Einstein and became fascinated by his big ideas.

King's College, part of Cambridge University, where Turing studied from 1931. The computer room at the college is named after him.

> Turing was a world-class marathon runner. He came in fifth in the qualifying heats for the 1949 Olympic Games.

The Turing machine

In 1931, Turing went to King's College, Cambridge, to study mathematics. It was here that he published a paper in 1936 about an imaginary device that carried out mathematical operations by reading and writing on a long strip of paper. Later known as a "Turing machine," his idea described how a computer could work long before the technology existed to build one. Later the same year, Turing went to the United States to study at Princeton University.

Code-cracking

Turing returned to England in 1938, where the British government asked him to work on deciphering German codes. When World War II broke out, Turing moved to Bletchley Park, the secret headquarters of the Code and Cipher School. With his colleague Gordon Welchman, Turing developed the "Bombe," a machine that could decipher German messages encrypted (coded) on a typewriter-like device called the
Enigma machine (right).
 larger computer. It sped up calculations in various fields, including aeronautics.

The first computers

After the war, Turing moved to the Britain's National Physical Laboratory, where he designed a computer called the Automatic Computing Engine (ACE) that was able to store program instructions in an electronic memory. It was never built, but it led to the development of the Pilot ACE, one of the first general-purpose computers. In 1948, Turing moved to Manchester University to work on computer programming there. Some of these early computers were vast, filling whole rooms and weighing many tons.

Turing's test

Turing wanted to know whether a machine could be considered capable of thinking. In 1950, he devised an experiment to see whether a computer could convince someone asking it questions that it was, in fact, human. Turing's "imitation game", now known as the Turing test, is still used to determine a machine's ability to show humanlike intelligence.

Tragic suicide

Turing was gay at a time when homosexuality was illegal in Britain. Because of this, he faced persecution and the threat of imprisonment. In 1954, Turing took his own life. This statue of him is in Bletchley Park, today a museum about the secret code-breaking activities of World War II.

Turing was given an award for service to his country during World War II.

ALG3 BRA

There's an important area of math called algebra that replaces numbers with symbols loften letters of the alphabet) in order to solve a problem. In addition to mathematicians, scientists use algebra to find out things about the world.

Simple algebra

The difference between arithmetic and algebra can be seen by writing the same calculation two ways:

In arithmetic: $4+5=\mathbf{5 + 4}$
In algebra: $\mathbf{x + y = y + \mathbf { x }}$
You can tell that, in this case, $x=4$ and $y=5$.
The first is a simple equation. The algebra, however, gives you the rule for any numbers you want to use as x and y. You can see this in the following example

$x+y=z$

If you are given the values of x and y, then you can work out what z is. So if $x=3$ and $y=5$:

$3+5=z$

$z=8$

उరలలుల్ల్N00000

BRAINTEASERS

You use algebra to solve problems all the timeyou just don't notice it. As you think through the puzzles on these pages, you'll be using algebra, but when it's disguised in everyday situations or a fun brainteaser, it's not that scary!

Cake bake

Jim has been asked to bake a cake for a friend's birthday, and is given the following recipe:

- 16 tbsp butter
- 2 cups sugar
- 4 eggs
- 4 cups flour

At the last minute, Jim realizes that he does not have enough eggs. The stores are closed, so he decides to adapt the recipe to work with three eggs. What are the new quantities of butter, sugar, and flour he should use?
A number of petals
In each flower below, the numbers on the outside petals have been added and multiplied in the same way to make the number in the middle. Can you figure out what the pattern is, and find the answer to the third flower?

In a flap
There is an apple tree and a beech tree in a park, each with some birds on it. If one bird from the apple tree were to fly to the beech tree, then both trees would have the same number of birds. What is the difference between the numbers of birds?

In the balance
In math equations, you want
on the left of an equals siont the things same as those on the right to be the the weights on eith the right-just as scale are equal. So, in thide of a bast as how many golf. Sol, in the pu a balanced below,
balance the third scale?

A fruity challenge
Each type of fruit in these grids is worth a different number. Can you work out what the numbers are? When you have this information, figure out what the missing sum values at the end of every row and column are.

With a little help

You're on your own

SECRETS OF THE UNIVERSE

In the hands of scientists, math has the power to explain the Universe. Science is all about proving theories-and to do that, scientists need to use math to make predictions from the theory. If the predictions turn out to be correct, then the theory probably is, too.

Galilieo built powerful telescopes to study astronomy, and sold others to the military for spotting enemy ships.

Plant breeding project

Mighty machines Mathematicians are more likely to spend their time looking for patterns, coming up with ideas, or trying to prove new theorems than doing calculations. Why bother, when there are computers to do the work for us? The most powerful supercomputers can work billions of times faster than any human being. Their extraordinary numbercrunching abilities mean scientists can test their theories more thoroughly than ever before.

Nothing's perfect

In 1931, Austrian-born mathematician Kurt Gödel (1906-1978) published a revolutionary theorem. He showed that it is impossible for any complicated mathematical theory to be completethere will always be gaps, and there will always be statements in the theory that can't be proven. Math was never the same again!

Professor Stan Gudder said,

 "the essence of mathematics is not to make simple things complicated, but to make

THE BIG

马
If you add 10% to 100 you get 110 . If you subtract 10% from 110, what do you get?

A 90
B 99
C 100

For a difficult or long calculation, estimate your solution before Working out the exact answer, especially when using a calculator.

Try different ways to learn facts, figures, and formulas: Say the words out loud, make up a rhyme, or even draw a helpful picture.

1. Whatis $2.3 \times 10 ?$

A 2.30
B 20.3
C 23

12
Using a piece of string, which of these triangles will enclose the largest area?

A Right
B Equilateral
C Scalene

Which of these shapes has the smallest number of faces?

A Cube
B Square-based pyramid
C Tetrahedron

Are there certain math questions that always make you stop and think... then scratch your head and think again? If so, you're not alone. There are math traps it is easy to fall into, until you know what to look out for. Here are some of the most common confusions, and some other tricky questions to add to the fun.

Make sure you really understand a question, especially if it is asked out loud. Write the question down, or ask the teacher to repeat it!

algebra

The use of letters or symbols in place of numbers to study patterns in math.

angle

A measure of how far a line needs to rotate to meet another. An angle is usually measured in degrees, for example 45°.

area

The amount of space inside a 2-D shape. Area is measured in units squared, for example $\mathrm{in}^{2}\left(\mathrm{~cm}^{2}\right)$.

arithmetic

Calculations that involve addition, subtraction, multiplication, or division.

axis (plural axes)

The line on a graph. The distances of points are measured from it. The horizontal axis is called the x-axis, and the vertical axis is called the y-axis.

bar graph

A type of graph that uses the heights of bars to show quantities. The higher the bar, the greater the quantity.

billion

A thousand million, or 1,000,000,000.

chart

A picture that makes mathematical information easy to understand, such as a graph, table, or map.

cipher

A code that replaces each letter with another letter, or the key to that code.

circumference

The distance around the edge of a circle.

code

A system of letters, numbers, or symbols used to replace the letters of a text to hide its meaning.

consecutive

Numbers that follow one after the other.

cube

Either a solid shape with six faces, or an instruction to multiply a number by itself three times, for example $3 \times 3 \times 3=27$. This can be written 3^{3}.

data

Factual information, such as measurements

decimal

A number system based on 10 , using the digits 0-9. Also a number that contains a decimal place.

decimal place

The position of a digit after the decimal point.

decimal point

The dot separating the whole part of a number and the fractions of it, for example 2.5.

degrees

The unit of measurement of an angle, represented by the symbol ${ }^{\circ}$.

diameter

The greatest distance across a shape.

digit

A single-character number, such as 1 or 9 .

encrypt

To turn a message into code to keep the information secret.

equation

A mathematical statement that two things are equal.

equilateral triangle

A triangle that has three angles of 60°, and sides of equal length.
estimate
To work out a rough answer.

even number

A number that can be divided exactly by two.

faces

The surfaces of a 3-D shape.

factors

The numbers that can be multiplied together to give a third number. For example, 2 and 4 are factors of 8 .

formula

A mathematical rule, usually written in symbols.

fraction

The result of dividing one number by another.

frequency

How often something happens within a fixed period of time.

geometry

The area of math that explores shapes.

graph

A chart that shows how two sets of information are related, for example the speed and position of a moving object.

hexagon

A flat shape with six straight sides.

horizontal

Parallel to the horizon. A horizontal line runs between left and right, at right angles to the vertical. Also describes a surface that is flat, straight, and level.

isosceles triangle

A triangle with at least two sides of equal length and two equal angles.

line of symmetry

If a shape has a line of symmetry, you can place a mirror along the line and the reflection will give an exact copy of half the original shape.

measurement

A number that gives the amount or size of something, written in units such as seconds or feet.

octagon

A flat shape with eight straight sides.

odd number

A number that gives a fraction with 0.5 at the end when divided by two.

parallel

Two straight lines are parallel if they are always the same distance apart.

pentagon

A flat shape with five straight sides.

percentage/percent

The number of parts out of a hundred. Percentage is shown by the symbol \%.

pi

The circumference of any circle divided by its diameter gives the answer pi. It is represented by the Greek symbol Π.
polygon
A 2-D shape with three or more straight sides.

polyhedron

A 3-D shape with faces that are all flat polygons.

positive

A number that is greater than zero.

prime factors

Prime numbers that are multiplied to give a third number. For example,
3 and 5 are the prime factors of 15 .

prime number

A number greater than one that can only be divided exactly by itself and one.

probability

The likelihood that something will happen.

product

The answer when two or more numbers are multiplied together.

pyramid

A 3-D shape with a square base and triangular faces that meet in a point at the top.

quadrilateral

A 2-D shape with four straight sides and four angles. Trapeziums and rectangles are both examples of quadrilaterals.

radius

The distance from the center of a circle to its edge.

range

The difference between the smallest and largest numbers in a collection of numbers.

ratio

The relationship between two numbers, expressed as the number of times one is bigger or smaller than another.

right angle

An angle that is exactly 90°.

scalene triangle

A triangle with three different angles and sides that are three different lengths.

sequence

A list of numbers generated according to a rule, for example $2,4,6,8,10$.

square

A 2-D shape with four straight equal sides and four right angles.

squared number

A number multiplied by itself, for example $4 \times 4=16$. This can also be written 4^{2}.

sum

The total, or result, when numbers are added together.

symmetry

A shape or object has symmetry lor is described as symmetrical) if it looks unchanged after it has been partially rotated, reflected, or translated.

table

A list of organized information, usually made up of rows and columns.

tessellation

A pattern of geometric shapes that covers a surface without leaving any gaps.

tetrahedron

A triangular-based pyramid.

theorem

A math idea or rule that has been, or can be, proved to be true.

theory

A detailed, tested explanation of something.

3-D (threedimensional)

The term used to describe objects that have height, width, and depth.

triangle

A 2-D shape with three straight sides.

2-D (two-dimensional)

A flat object that has only length and width.

velocity

The speed in a direction.

Venn diagram

A method of using overlapping circles to compare two or more sets of data.

vertex (plural vertices)

The corner or point at which surfaces or lines meet within shapes.

vertical

A vertical line runs up and down, at right angles to the horizon.

whole number

A number that is not a decimal

Answers

$b-?$ A world of math

F C
c

D A

E

Panel puzzle

The extra piece is B
Profit margin
Bumper cars： 60 percent of 12 is 7.2
Number of sessions： $4 \times 8=32$
Fares per session： $32 \times \$ 2=\$ 64$
$\$ 64 \times 7.2=\$ 460.80$
Cost to run：$\$ 460.80-\$ 144=\$ 316.8$
Profit：$\$ 316.80$ per day

A game of chance

There is a 1 in 9 chance of winning： 90 （customers）x 3 （throws）$=270$ $270 \div 30$（coconuts）$=9$

l2－13 Math skills

Spot the shape

1 D
2 C
3 C
4 C

18－19 Problems with numbers

A useful survey？

1 The survey may be biased because it was carried out by the Association for More Skyscrapers．
2 They only surveyed three of the 30 parks（ 1 in 10）．This is too small a sample to be able to arrive at a conclusion about all the parks．
3 We don＇t know how many visitors went to the third park．
4 The fact that the other two parks had fewer than 25 visitors all day suggests the survey took place over one day，too short a time frame to draw useful conclusions．

The bigger picture

Because tin helmets were effective at saving lives，more soldiers survived head injuries，rather than dying from them．So the number of head injuries increased， but the number of deaths decreased．

こコ－ころ Seeing the solution

What do you see？
1 Toothbrush，apple，lamp
2 Bicycle，pen，swan
3 Guitar，fish，boat
4 Chess piece，scissors，shoe

Thinking in 2－D

Visual sequencing

Tile 3

Seeing is understanding

The snake is $30 \mathrm{ft}(9 \mathrm{~m})$ long．

3－D vision

Cube 2

30－3l Big zero

Roman homework

This question was designed to show why place value makes math so much easier． The quickest way to solve the problem is to convert the numbers and the answer： CCCIX（309）$+\operatorname{DCCCV}(805)=1,114$（MCXIV）

34－35 Thinking outside the box

1 Changing places

Second place．

2 Pop！

Use a balloon that＇s not inflated．
3 What are the odds？
1 in 2.

4 Sister act

They＇re two of a set of triplets．

5 In the money

Both are worth the same amount．

6 How many？

You would need 10 children．

7 Left or right？

Turn the glove inside out．

8 The lonely man

The man lived in a lighthouse．

9 A cut above

Because it would be more profitable．

10 Half full

Pour the contents of the second cup into the fifth．

11 At a loss

The very rich man started off as a billionaire and made a loss．

12 Whodunnit？

The carpenter，truck driver，and mechanic are all women．Note that the question says fireman，not firefighter．

13 Frozen！

The match！
14 Crash！
Nowhere－you don＇t bury survivors．

15 Leave it to them

One pile．

16 Home

The house is at the North Pole so the bear must be a white polar bear．

36－37 Number patterns

Prison break

As you work through the puzzle，you should begin to see a pattern in the numbers on the doors left open－they are all square numbers．So the answer is 7： $1,4,9,16,25,36$ ，and 49 ．

Shaking hands

3 people $=3$ handshakes
4 people $=6$ handshakes
5 people $=10$ handshakes
The answers are all triangle numbers．

A perfect solution？

The next perfect number is 28 ．All perfect numbers end in either 6 or 8 ．

44-45 How big? How far?

Measure the Earth

$360^{\circ} \div 7.2^{\circ}=50$
50×500 miles $(800 \mathrm{~km})=25,000$ miles ($40,000 \mathrm{~km}$).

50-5l Seeing sequences

What's the pattern?

A 1, 100, 10,000, 1,000,000
B $3,7,11,15,19,23$
C $64,32,16,8$
D $1,4,9,16,25,36,49$
E 11, 9, 12, 8, 13, 7, 14
F $1,2,4,7,11,16,22$
G $1,3,6,10,15,21$
H $2,6,12,20,30,42$

52-53 Pascal's triangle

Braille challenge

Look at row 6 of Pascal's triangle and add up the numbers to get 64 This means there are 64 different ways to arrange the dots. For a four-point pattern, go to row 4 of the triangle, which adds up to 16 , showing that there are 16 possible ways to arrange the dots.

54-55 Magic squares

Making magic

2	7	6
9	5	1
4	3	8

7	4	7	14
5	11	2	16
10	6	15	3
12	13	8	1

24	18	32	3	11	23
2	25	4	27	22	31
34	9	1	10	36	21
6	26	30	28	5	16
33	14	29	8	20	7
12	19	15	35	17	13

Your own

 magic square| 11 | 24 | 7 | 20 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 17 | 5 | 13 | 21 | 9 |
| 23 | 6 | 19 | 2 | 15 |
| 4 | 12 | 25 | 8 | 16 |
| 10 | 18 | 1 | 14 | 22 |

ьb-ь? Puzzling primes

Sifting for primes

Prime cubes

5b-57 Missing numbers

Sudoku starter

| 1 | 7 | 6 | 4 | 8 | 9 | 3 | 2 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 8 | 9 | 7 | 2 | 3 | 1 | 4 | 6 |
| 4 | 2 | 3 | 6 | 5 | 1 | 8 | 9 | 7 |
| 3 | 9 | 2 | 8 | 4 | 7 | 5 | 6 | 1 |
| 8 | 1 | 4 | 5 | 3 | 6 | 2 | 7 | 9 |
| 6 | 5 | 7 | 9 | 1 | 2 | 4 | 8 | 3 |
| 9 | 4 | 5 | 3 | 6 | 8 | 7 | 1 | 2 |
| 7 | 3 | 1 | 2 | 9 | 4 | 6 | 5 | 8 |
| 2 | 6 | 8 | 1 | 7 | 5 | 9 | 3 | 4 |

Slightly harder

7	8	5	6	9	3	1	2	4
9	6	4	5	2	1	3	8	7
2	1	3	a	4	7	6	5	9
3	5	6	7	8	9	2	4	1
8	4	9	2	1	6	5	7	3
1	2	7	3	5	4	8	9	6
5	7	1	9	6	8	4	3	2
4	9	8	1	3	2	7	6	5
6	3	2	4	7	5	9	1	8

Sujiko

Kakuro

70-7l Triangles

Measuring areas

The areas of the triangles are:

$3 \times 7=21$	$21 \div 2=10.5$
$3 \times 5=15$	$15 \div 2=7.5$
$4 \times 4=16$	$16 \div 2=8$
$4 \times 8=32$	$32 \div 2=16$

Add them together:
$10.5+7.5+8+16=42$ square units

80-8l 3-D Shape puzzles

Constructing cubes

A + D
H + I
E + G
$B+C$
F is the odd one out.

Boxing up

Net D will not make a cube.

Face recognition

There are many ways to do this.
Here's just one:

How many more can you find? Experiment with different starting shapes. Also, try making a line of shapes that form a circle.

Trace a trail

You can trace a trail around the octahedron, but not the tetrahedron or cube. This is because the journey is impossible if more than two corners of a shape have an odd number of connections to other corners.

Building blocks

A $10 \mathrm{~cm}^{3}$
B $19 \mathrm{~cm}^{3}$

74-75 Shape shifting

Triangle tally

There are 26 triangles in total.

Tantalizing tangrams

Fox

Shapes within shapes

Matchstick mayhem

Dare to be square

4×4 grid
You can draw this using just 6 squares.

Bb-8? Amazing mazes

Simple mazes

Complex mazes

Weave mazes

१b-97 Mapping

On the map

Church $=44,01$
Campsite $=42,03$

100-101 Probability

What are the odds?

The order of likelihood is:

$\mathbf{1}$ Playing soccer	$\mathbf{6}$ Struck by lightning
$\mathbf{2}$ Snake bite	$\mathbf{7}$ Hit by a falling coconut
3 Falling down a manhole	$\mathbf{8}$ Shark attack
4 Computer game	$\mathbf{9}$ Walking into
exhaustion	a lamppost
$\mathbf{5}$ Hippo attack	$\mathbf{1 0}$ Hit by a meteorite

104-105 Logic puzzles and paradoxes

Logical square

108-109 Codes
 and ciphers

Caesar cipher

The message reads: "Well done this is a hard code."

Substitution cipher

This message reads: "Codes can be fun."

Polybius cipher

The cipher reads: "This is a very old code."
Shape code

$=0$	$=6$
$=1$	$=8$
$=2$	$=9$
$=3$	$=10$
$=4$	$=12$
$=5$	

112-1.3 Algebra

Lunar lightness

Object are six times lighter on the Moon than on the Earth. So, to find out how much you would weigh on the Moon, divide your weight by six.

Black or white?

The hat is black. Amy could only know her hat color if both Beth and Claire were wearing white (since she knows that not all three hats are white), but Amy answers "No." That means there must be a black hat on at least one of the others. Beth realizes this and looks at Claire to see if her hat is white, which would mean Beth's was the black one. But it isn't, so Beth answers "No." So Claire must have the black hat, and she knows this because she heard the other sisters' answers.

The barber's dilemma

This story is a paradox.

Four digits

The answer is 1,349 .

People with pets

Anna: Nibbles (parrot).
Bob: Buttons (dog).
Cecilia: Snappy (fish).
Dave: Goldy (cat).
Lost at sea

114-11.5 Brainteasers

A number of petals

The answer is 117. The pattern is adding up the three smallest numbers, and multiplying the total by the largest number. So $(3+4+6) \times 9=117$.

Cake bake

Jim will need 12 tbsp butter, 1.5 cups sugar, and 3 cups flour.

In a flap

The difference is two. If there were seven birds in the apple tree, for example, and one left to even out the numbers, there would need to be five in the beech tree.

In the balance

You need 12 golf balls.

A fruity challenge

Pineapple $=12$
Orange $=18$
Apple $=6$

Banana $=20$
Strawberry = 15
Grapes = 16

118-119 Big quiz

1 A -Midnight is 12:00 am .
$2 B-3$ hours and 6 minutes
$3 \mathrm{C}-{ }^{7} / 12$
$4 B-1 / 16$
5 A-8.35
$6 \mathrm{~A}-2.1 \%$ of 43,000 is bigger than 0.21% of 4,300
7 C-You need to make 9 cuts
8 B-99
9 A - You are adding together two negative numbers, so $(-1)+(-2)=-3$.
10 A-0.01
$11 \mathrm{C}-23$

12 B -To find the area of a triangle work out $1 / 2 x$ height x base. An equilateral triangle will give the highest and widest dimensions and therefore the largest area. 13 C -A tetrahedron has just four faces.
$14 B-7: 10$
$15 B-A$ cube is a 3-D shape, while the others are 2-D.
16 A-The question is not asking what is a quarter of 3 but how many quarters in 3 .
17 A-A circle's edge is always the maximum distance from the centre point. 18 A-This is a trick question, you can't divide numbers by zero. Try it on a calculator and it will register an "error".

INDEX

A

absolute zero 31
Academy of Science,
St. Petersburg 84, 85
algebra 112-115
angles 43
right angle 70
animals 14-15, 73
Archimedean screw 40
Archimedes 40-41
areas, measuring 71 arithmetic sequences 50 art 11, 61
artificial intelligence 17, 110 asteroids 46
astronomy 43, 46, 58, 98, 99
atomic clocks 95
avalanches 47

B

Babbage, Charles 21, 106 babies 14
Babylonians, Ancient and base-60 system 27, 28, 63 and degrees 43 number system 28-29 place-value system 27 and zero 30
Bacon, Roger 19
balance 115
bar charts 102
bar codes 106
barn (measurement) 47
base-10 see decimal system
base-60 system 27, 28, 63
beard growth 46
bell curve 59
binary system 29
Bletchley Park 110, 111
body see human body
Bombe 110
Brahmagupta 30
Braille 53
brain 10-11, 12-13, 14, 73
vs. machine 16-17
memory 13,15
neurons 11,16
and 3-D vision 79
visualization 12, 13, 19, 22-23
brain games
big quiz 118-119
brainteasers 114-115
calculation tips 38-39
codes and ciphers
108-109
displaying data 102-103
lateral thinking 34-35
logic puzzles 104-105
magic squares 54-57
magic tricks 64-65
math skills 12-13
mazes 86-87
measurement 44-45
optical illusions 23 , 88-91
shape shifting 74-75
3-D shapes $80-83$
visualization 22-23

C

Caesar cipher 108
calculation 6, 27, 44-45 tricks and shortcuts 38-39
calculus 41, 99
Cantor, Georg 61
casinos 101
cerebrum 10-11
Ceres 58
chance 7, 100, 101
chaos 100
checklists 103
chess 55
children 14-15
chili peppers 47
China 62, 63, 74
number system 28-29
Christianity 62, 63
cicadas 67
cipher wheel 108
ciphers 106-109
circles 76-77
circumference 76
clocks 95
codes and code breakers 67, 106-111
coins
counterfeit 99
tossing 52, 100
colors 12, 89
comets 98
computer languages 21
computers 17, 50
binary system 29
encryption 67, 107
hackers 107
history of $21,53,110-111$
supercomputers 117
contour lines 96
counting 12, 26-27, 28
crime, measuring 102-103
crystals 78
cubes $33,78,80,81,83,84$
cubic numbers 37
curves 59,77

D

data, displaying 102-103
decagon 72
decibels (dB) 46
decimal system 28,31
degrees 43
diameter 76, 77
diatoms 73
digits $26,28,39$
distance, measuring 44, 71, 95
division 39
dodecagon 72
dodecahedron 33, 84
domes 82
doughnuts, shape of 81
Driscoll, Agnes Meyer 106
dyscalculia 18

E

Earth, measuring 45
eggs 79, 82
Egyptians, Ancient 27, 40, 44 and fractions 26 number system 28-29 time system 94
Einstein, Albert 117
electronic networks 87
ellipses 77
encryption 67, 107
Enigma machine 110
equations 112-113
equilateral triangle 70
Eratosthenes 45, 66
Escher, Maurits Cornelis 61
eternity 60
Euclid 26
Euler, Leonhard 84-85
eyes $11,79,90$
see also visualization

F

factors 37
prime 67
Faraday, Michael 18
Fermat, Pierre de 16
Fibonacci (Leonardo of Pisa) 27
Fibonacci sequence 51, 53
fingerprints 42
Fizz-Buzz 27
flatfish 73
food
measurements 47 supply 50
footprints 43
forensic science 42-43
formulas 112
fractions 26, 33
frequency analysis 107
Fujita scale 47

G

Galileo Galilei 99, 116
Gauss, Karl 58-59
genetics 116
geometric sequences 50
geometry see shapes
Gödel, Kurt 117
golden ratio 51
golden rectangle 51
golden spiral 51
GPS (Global Positioning System) 97
graph theory 85
graphs 59, 102
gravity 79, 85, 99, 113, 117
Great Internet Mersenne Prime Search (GIMPS) 67
Greeks, Ancient 26-27, 36, 37, 71, 76, 84, 109
Cretan labyrinth 86, 87
number system 28-29 see also Archimedes; Eratosthenes; Pythagoras Greenwich Meridian 94, 95 Gudder, Stan 117

H

hackers 107
Halley, Edmond 98
heptadecagon 58
heptagon 72
hexagons 72, 76
Hipparchus 71
Hippasus 33
hobo scale 47
hockey stick sums 53
honeycombs 73
Hopper, Grace 21
horsepower 47
human body
body clock 95
measuring with 44
not symmetrical 73
Hypatia 21
hypotenuse 32

I

icosahedron 33, 78, 79, 84
infinity 60-61
insight 11
International Date Line 94-95
intuition 34
irrational numbers 33, 76
Islam 62
isosceles triangle 70

\jmath

Jefferson, Thomas 106

K

Kakuro 57
Kaprekar's Constant 65
King, Augusta Ada 21
kite 72
Königsberg bridge problem 85
Kovalevskaya, Sofia 20
labyrinth, Cretan 86, 87
lateral symmetry 73
lateral thinking 34, 75
Leibniz, Gottfried 84, 99
Lemaire, Alex 38
Leonardo da Vinci 51
Leonardo of Pisa see Fibonacci lie detectors 43
light 98
light-years 95
logic 104-105, 114-115
lucky numbers 62-63

M

magic numbers 51, 54-55
magic squares 54-55
magic tricks 64-65
magnetism 59
Malthus, Thomas 50
maps 96-97
math
learning 14-15, 18, 26-27 skills 10, 12-13
Mayan number system 28-29
mazes 86-87
measurements 42-47, 71
memory 13, 15
Mendel, Gregor 116
Möbius strip 91
Moon 59, 113
Moore, Gordon E. 50
motion 98
multiplication 38
music 11, 33

N

nature $51,67,73,116$
network diagrams 87
neurons 11, 16
Newton, Isaac 98-99
Nightingale, Florence 21
Noether, Amalie 20
nonagon 72
numbers
a world without 29
animals' sense of 14-15
children's sense of 14-15
first written 27
irrational 33, 76
lucky and unlucky 62-63
magic 51, 54-55
misleading 19
patterns of 36-37,
50-53, 113
perfect 37
prime 66-67
problems with 18-19
rational 33
sequences 50-51
systems of 27, 28-29, 31
very large 41, 43
very small 43
visualizing 12, 13, 19
numerophobia 18

0

octagon 72
octahedron 33, 78, 81, 84
optical illusions 23, 88-91
optics 98
orbits 77, 98

P

packaging 79
panel puzzle 6
paper, walking through 83
parabola 77
paradoxes 104
parallelogram 72
Pascal, Blaise 52
Pascal's triangle 52-53
patterns 7, 36-37, 50-53, 113
Penrose triangle 90
pentagon 72
perfect numbers 37
perspective 88
phi 51
pi 76
pictograms 103
pie charts 21, 103
Pilot ACE 111
pinball 100
place-value system 27, 31
planetarium, first 40
planets 77, 79, 99
dwarf planet 58
plants 51, 116
Platonic solids 84
poles 94
Polybius cipher 109
polygons 72
polyhedra, regular 33
powers 41, 43
practice 19
predictions 101
prime factors 67
prime numbers 66-67
prisms 81, 98
probability $52,100-101$
prodigies 16
profit margin 7
public key encryption 107
pulleys 41
pyramids 78, 81
Pythagoras 26, 32-33
theorem 32

Q

quadrilaterals 72

R

radius 76
Ramanujan, Srinivasa 16
ratio 51
rational numbers 33
rational thought 10
rectangle 72
rhombus 72
right angle 70
right triangle 70
Roman measurements 44
Roman numerals 28-29, 31, 62
rotational symmetry 73
roulette 101
Russia 63, 84, 85, 94

S

satellite dishes 77
savants 16
scale 97
scalene triangle 70
science 6, 116-117
scientific equations 113
scientific notation 43
scientific thinking 10
Scoville scale 47
seconds, counting 45
semiprimes 67
sequences 50-51
shadows 44
shape code 109
shapes $7,13,26,70-77$
impossible 90-91
3-D 23, 78-83
sieve system 66
smells, measuring 47
snowflake 73
soccer balls, shape of 79
sound, measuring 46
spatial skills 11

spheres 79
spinning objects 20
spirals 51
square numbers 36
squares $71,72,75$
logical 104
magic 54-55
squaring 39
standard units 42
starfish 73
statistics 21
string theory 117
substitution cipher 108
Sudoku 56
Sujiko 57
Sun 44, 45, 79, 99
supercomputers 117
superstitions 62-63
symmetry 73

T

tables of information 103
tallies 26, 102
Tammet, Daniel 16
tangrams 74
telegraph, electric 59
telescopes 98
temperature scales 31 ten 32
decimal system 28, 31
tessellation 73
tetrahedron 33, 78, 81, 82, 84
$3-\mathrm{D}$ shapes $23,78-83$
thunderstorms 45
tiling 73
time 94-95
time zones 94-95
Torino scale 46
tornadoes, measuring 47
torus 81
trapezium 72
triangles 32, 70-71, 74
Pascal's triangle 52-53
Penrose triangle 90
triangular numbers 37
Turing, Alan 110-111

U

Universe 61, 116-117 unlucky numbers 62-63

V

Venn diagrams 103
video games, benefits of 23 vision 11, 79, 90
visualization 12, 13, 19, 22-23
volcanoes, explosivity of 46 volume, measuring 40

W

Walsingham, Francis 106 water bomb 83
web, spider's 73
Wiles, Andrew 16
women as mathematicians 20-21

Z

zero 30-31
probability of 100

[^0]:

