

Written by
 Dr. Anne-Marie Imafidon

Penguin Random House

Written by Dr. Anne-Marie Imafidon Consultants Sean McArdle, Meryl Glicksman

Editors Sally Beets, Kathleen Teece Senior designers Katie Knutton, Ann Cannings US editor Elizabeth Searcy
US senior editor Shannon Beatty
Additional editorial Katie Lawrence, Abigail Luscombe
Design assistants Eleanor Bates, Katherine Marriott
Additional design Emma Hobson,
Aishwariya Chattoraj, Nidhi Mehra
Illustrations Mark Ruffle, Katie Knutton, DTP designer Nityanand Kumar
Project picture researcher Sakshi Saluja Jacket coordinator Issy Walsh Jacket designer Katie Knutton Publishing manager Francesca Young Managing editors Laura Gilbert, Jonathan Melmoth

Managing art editor Diane Peyton Jones
Preproduction producer Dragana Puvacic Senior producer Ena Matagic
Creative directors Clare Baggely, Helen Senior Publishing director Sarah Larter

First American Edition, 2020 Published in the United States by DK Publishing 1450 Broadway, Suite 801, New York, NY 10018

Copyright © 2020 Dorling Kindersley Limited DK, a Division of Penguin Random House LLC

202122232410987654321
001-316131-May/2020
All rights reserved.
Without limiting the rights under the copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the copyright owner.

Published in Great Britain by Dorling Kindersley Limited
A catalog record for this book is available from the Library of Congress.

ISBN 978-1-4654-9303-3
DK books are available at special discounts when purchased in bulk for sales promotions, premiums, fund-raising, or educational use. For details, contact: DK Publishing Special Markets, 1450 Broadway, Suite 801, New York, NY 10018

SpecialSales@dk.com
Printed and bound in China
A WORLD OF IDEAS:
SEE ALL THERE IS TO KNOW
www.dk.com

Contents

4 Foreword by Dr. Anne-Marie Imafidon
6 How this book works

8 Getting ready

1
 Edible math

12 Counting

14 Edible abacus
16 Watermelon fractions
18 Spinning snack decider
20 Weighing scales
22 Measuring
24 Smoothie servings
26 Shapes
28 Marshmallow shapes
30 Tessellating cookies

2
 Toys and games

36 Joan Clarke
38 Cipher wheel
40 Adding
41 Subtracting
42 Animal number bonds
44 Make your own currency
48 Multiplication
50 Dividing clay
52 Division

3) Out and about

56 Buildings
58 Zaha Hadid
60 Shape city
66 Möbius loop
68 Rainwater measures
70 Natural symmetry
72 Rotating starfish
74 Nature array
76 Times-table flowers

(4) Getting around

80 Time
84 Timing helicopters
86 Distance competition
88 Decimals
90 Make a marble run
94 Gladys West
96 Picture algorithm
98 Measure a circle
(5) Around the home

102 Make a calendar
104 Printing patterns
106 Create a floor plan
108 Benjamin Banneker
110 Sunflower size
112 Treasure map coordinates
116 Computer math
118 Tomohiro Nishikado

6 Your body

122 Make your body clock
126 Finger place value
128 What are statistics?
130 Data discovery
134 Angles
136 Did you know?
138 Glossary
140 Index
144 Acknowledgments

I was excited to write this book and share my love of math with you. It's something that has fascinated me since I was your age and continues to amaze me with every new thing I learn.

Math is about solving problems and being creative. The world is full of problems waiting to be solved. Many people around the world work as scientists, engineers, technologists, and in hospitals-all of them use math skills to help people and create solutions. I hope you'll be able to use your creativity as you try the activities packed into this book.

As you turn the pages, you'll realize that math isn't just about the classroom or homework. It's all over our world and is done by almost everyone every day. The food you eat, the buildings you visit, and your own body-all are made possible by a fantastic balance of mathematics. Math shows up everywhere.

Before you get started, I have one special request for you. When you learn a cool new bit of math, read about an amazing person, or build something new from this book, share it with your friends and family. Help them be math wizards with you!

Have conversations with the people around you whenever and wherever you see math. Keep talking and thinking about itmaybe one day you'll get to write a book about it too.

Anyone can be a math wizard. Let's get you started!

Anne-Marie/mefidon
 『* +

Dr. Anne-Marie Imafidon

How this book works

In How to be a Math Wizard, you will learn how to think and act like a mathematician. The book is packed with fun activities, important topics, and people who have used their math skills to do amazing things.

Awesome activities

Learn on the job with the activities throughout this book, which show key ideas within math. There are also crafts to make math devices, such as an abacus, and memory aids that help you remember important facts.

Safety first

All of the projects in this book should be done carefully. If you see this symbol at the top of a page, it means that you will need an adult to help you with the activity.

Take particular care when

- you are using sharp objects, such as scissors;
- you are running around with friends;
- you are handling hot food;
- you are outside-always tell an adult what you are doing.

The introduction lets you know which area of math you're exploring.

Look out for "Turn to..." bars leading you to related pages.

Feature boxes provide more information about the math behind the activity.

Top topics

Learn about some of the key math topics, such as division, measuring, and decimals. These will support and build on what you've learned through the craft projects.

Decimals

Decimals are a way of showing numbers smaller than one. We write them after a decimal point, which looks just like a period.

Decimals and fractions Fractions are another way to wite numbers
smaller than one Any decimal can also be witten as a fraction, and vice versa. To get the decimal
version of a fraction, use a calculator tod divide version of a fraction, use a calculator to divicic
the top number by the bottom number.

Mathematician • Born in 1930 - From the United States Gladys West realized as a young girl that she didn't... to work on her parents' farm. Instead, she chose to study math and science. Her calculations and discoveries help millions of us navigate the world each day using a digi
map system called GPS (Global Positioning System).

Astronomical Gladys
Cladys studied Iots of datat colleteed by

Math heroes

Meet the inspirational people who have used math to make a difference in the world. And remember: anyone can learn to be a math wizard.

Getting

 readyYou can do many of the activities in this book right away. Rummage around at home to see if you can gather the items you need. Here are instructions on how to use some of the most important math tools you'll need.

You can transfer a shape from this book onto paper or cardboard by tracing it. You'll need tracing paper, a sharp pencil, a soft graphite pencil (such as 6B), and the steps below.

(1)Place the tracing paper over the shape, and draw over the lines using any pencil.

Place the tracing paper, shaded side down, onto the paper or cardboard you're tracing onto.

Flip the tracing paper. Shade over the back of the lines with a soft graphite pencil.

Pressing down with a sharp pencil, draw over the lines of the shape to transfer it.

Calculators

Calculators help us find answers quickly. To use one, press the buttons that show the numbers and symbols in an equation in order. Then, press the "=" button to show the answer.

For 45×7, you would press " 4 " and "5" to make 45, then "x," then "7," and finally the "=" symbol.

For numbers with more
than one digit, press each digit in the number, from left to right. So, for "52," you'd press "5" and then "2."
$1) \times \div$ 1 (2) (3)
(0) \% $+8$

7) 8 (4) $56 \times \div$ (4) 5

Always press
"=" at the end of the equation.

Edible

 mathIf you look closely, there's math involved in how food looks, the way it's made, and how we divide it up. From making recipes to describing the shape of your favorite snack, learn to see the math behind the food on your plate.

Whole numbers

We count things one by one. If you have a whole orange and another whole orange-that's two oranges. We might count up fruit, vegetables, or other items of food if we're following a recipe.

Counting

You've probably been counting since you were little. It's a simple way of finding how many of something you have. Everyday life is full of counting. If you want to give each of your friends an orange, you'd count up the oranges. You'd need to count a lot more pieces of food if you were giving one to everybody in your school!

4 is less than 6

More than or less than?

Finding out if one number is bigger than another is called comparing numbers. For example, two is more than one. This type of math is useful in real life if you need to make sure you've shared something fairly. If you take six tomatoes and your friend is left with four, then you have taken more tomatoes than your friend.

Place value

All numbers are written using one or more of the same 10 digits- $0,1,2,3$, 4, 5, 6, 7, 8 and 9. However, the value of each digit in a number depends on its position in that number. This is called its place value. A 1 at the start of a three-digit number is worth more than if it were at the end!

The 1 in 136
cookies stands for 100 cookies.

The 3 in 136 cookies stands

100s

 10s $\begin{array}{l:l:l}1 & 3 & 6\end{array}$
What's it worth?

If you write down that you have 136 cookies, the first number, 1 , has a place value of 100 ; the middle number, 3 , has a place value of 30 (3 sets of 10); and the last number, 6 , is the number of cookies less than 10-making a total of 136.

Counting fractions

A fraction is part of a whole. Numbers less than one are fractions. You can count up fractions until you get a whole number. If you count the sections in a pizza, you're counting fractions!

Negative numbers

You can count down as well as up. When you count below zero, you are counting in negative numbers. These have a minus sign (-) in front of them. You may see negative numbers used for temperatures. It's probably $-1^{\circ} \mathrm{F}$ in your freezer. This is the perfect temperature for keeping frozen food.

Using fingers and toes to count very small numbers is all very well, but what about bigger numbers? An abacus is an object that helps you with more difficult counting, as well as adding and subtracting.

How do you use it?

The rows are worth different amounts, as shown on the picture below. To show a number, begin with all the fruit on the left. Then, move across each digit in the number, using the corresponding row. For 11,111, you would move one of each row across!

Watermelon fractions

What do a slice of pizza and an orange segment have in common? They're both fractions! When we split something up into parts, we create fractions. Here's how you can split up a watermelon plate.

Turn the plate over. Use a pencil and a ruler to draw a thin line down the middle.

Carefully cut along the line to divide it into two halves.

Two halves

Four quarters

(4)Make two more watermelon plates, but cut them into quarters and eighths. Write the fraction on the back of each piece. One half is written as $1 / 2$, one quarter is written as $1 / 4$, and one eighth is written as $1 / 8$. See what fractions you can combine to make a whole plate.

You will need

snack decider

Probability is the chance of

 something happening. We can calculate probability and use it to predict what might happen in the future! Let's start by using it to choose a snack.

Draw at least one snack more than once so that the snacks have different chances of being landed on.

What is probability?

Probability is how likely something is to happen. Anything that will definitely happen has a probability of one. If it will never happen, then it has a probability of zero.

When you throw a die, there are six possible outcomes. The probability of getting each outcome is one out of six, or $1 / 6$.
 \section*{Weighing
 \section*{Weighing scales scales

 Weight (heaviness) is measured using

 Weight (heaviness) is measured using devices called scales. Follow the steps devices called scales. Follow the steps on these pages to make your very own on these pages to make your very own scales, and find out which of your items scales, and find out which of your items is heavier. If you know the weight of is heavier. If you know the weight of something, you can find something something, you can find something else that weighs the same.} else that weighs the same.}

Remove the strings from the table, and hang them off either end of the coat hanger, in the grooves if it has them. Tape them down.

Tape both sets of strings onto a table at the tied end. Next, tie each set of strings at the bottom as well.

Length

How tall are you? This is an example of length. In countries that use imperial units, length can be measured in inches (in), feet (ft), and miles (mi). In countries that use metric measurements, length is measured in centimeters (cm), meters (m), and kilometers (km).

Volume

How much liquid have you drunk today? Liquid is measured in volume. In countries that use imperial units, volume can be measured in fluid ounces (fluid oz) or pints (pt). In countries that use metric measurements, volume is measured in milliliters (ml) or liters (I).

Area

How big is this page? The total size of a flat shape is called its area. In countries that use imperial units, area is measured in square inches (in²) or square feet (ft^{2}). In countries that use metric units, area is measured in square centimeters $\left(\mathrm{cm}^{2}\right)$ or square meters $\left(\mathrm{m}^{2}\right)$.

Building designs include area to show that rooms will be big enough for things such as furniture to fit inside.

Measuring

Measuring something allows us to know more about it. We measure all kinds of things, from how big something is to how hot or cold it is. We often measure different items to compare them. Measurements are counted in lots of different units.

The volume of juice needs to be known to add water

The right volume of water is needed.

We might measure volume when diluting drinks.

Temperature

How hot or cold is it in your room? This is the temperature. In countries that use imperial measurements, temperature is measured in degrees Fahrenheit (${ }^{\circ}$ F). In countries that use metric measurements, temperature is measured in Celsius $\left({ }^{\circ} \mathrm{C}\right)$.

Time

How long has it been since you woke up? This is an example of time. We measure the passing of time in seconds, minutes, hours, days, weeks, and years.

Weight

How heavy are you? This is your weight. In countries that use imperial measurements, weight is usually measured in pounds (lb) and ounces (oz). In countries that use metric measurements, weight is usually measured in milligrams (mg), grams (g), and kilograms (kg).

Halving and doubling

Halving means splitting-or dividingsomething into two equal parts.
Doubling means adding the same amount of something to itself, which is a type of math called multiplication.

Three oranges

Half of three is one and a half.

Double three is six.

Smoothie

servings
> follow the recipe to make a delicious fruit smoothie. Then, learn how to change the recipe to make half as much, for when you're not feeling very thirsty. Finally, find out how to make double the amount, so you can give a glass to a lucky friend!

Sha

Some shapes are flat objects that you can draw. Others aren't flat, such as the shape of an orange.
You can spot different shapes by their features. They might have straight lines, curved lines, lots of lines, or very few lines!

2-D or 3-D?

These are two types of shape. Flat shapes are called two-dimensional (2-D). They exist only in two directions-left to right and top to bottom. Shapes with three directions are called threedimensional (3-D). These have the directions left to right, top to bottom, and front to back.

Some 2-D shapes

We can tell a shape by how many edges (lines) it has and how many corners (where two lines meet) it has.

Triangle

Square

Rectangle

Shapes in real life

Everything has a shape-just think about a plate of food! Cookies tend to be circles, and slices of round fruit can look like ovals. From above, some berries look like circles; crackers often look like rectangles; and cheese slices might look like triangles. Try spotting shapes around you to help learn the number of sides, corners, and edges.

Maryam Mirzakhani
The mathematical study of shapes is called geometry. Maryam Mirzakhani - Maryam Mirzakhani was a famous geometrist who spent lots of - 1977-2017 time studying - From Iran one-dimensional surfaces. These are surfaces made up of a single line. She won an important math award for her work, called the Fields Medal.

Cuboids and cubes have six faces.

Cube

Some 3-D shapes
3-D shapes have height, width, and length. Each corner is called a vertex; each side is called a face; and in between faces there are edges. Spheroids only have one Cylinder face and no edges or vertices.

Marshmallow

shapes

You can build 3-D shapes using marshmallows and dry spaghetti. The marshmallows sit at the corners, and each piece of spaghetti forms an edge. Master the shapes on these pages, and see which other ones you can build!

Put another marshmallow on top of each spaghetti strand. Connect the marshmallows with four more strands to finish your cube.

Connect four marshmallows using four strands of spaghetti to make a square. You'll need to break the spaghetti strands so that they are all equal in length. Don't poke them all the way through the marshmallows.

This marshmallow is a vertex of the pyramid.

This spaghetti strand is an edge of the pyramid.

Now try...

Can you create more shapes with marshmallows and spaghetti? Try to build this triangular prism-a shape that is made of two triangles connected to each other.

Bring the three spaghetti strands together, and add a final marshmallow to connect them. You now have a triangular pyramid!

Large mixing bowl

Electric mixer or whisk

Tessellating cookies

When shapes fit together without gaps, it's called tessellation. We're going to make some hexagon-shaped cookies. Can you arrange them in a tessellating pattern?

Preheat the oven to $350^{\circ} \mathrm{F}\left(180^{\circ} \mathrm{C}\right)$.

Beat the butter and egg together using a wooden spoon, until it's light and fluffy.

Stir in the sugar and vanilla extract.

Sift in the flour a little at a time.
Work it in until a soft dough forms.

Space out the cookies on cookie sheets lined with parchment paper.

Bake in the oven for 15 minutes, then transfer to a wire rack to cool.

Follow the instructions on the powdered sugar package to make icing. Divide the icing into two bowls, and add a few drops of different food coloring to each.

Tessellation in design

Math can inspire clothing designs. The houndstooth pattern uses tessellating shapes and has been around for more than 2,000 years. The same distinct shape appears in alternating colors, without gaps, across the design.

The houndstooth pattern

Ice an equal
number of cookies
in each color, and arrange them in a tessellating pattern, like this!

Subtracting

games
You might use math without thinking about it, even while you're playing! You could use the skill of counting to make a secret code, or division to break up a lump of clay. We can even use math to make up new games and activities.

Joan Clarke

Code breaker • 1917-1996 • From Britain

Joan studied math in college and went on to work for the British government during the Second World War (WWII). She used her mathematical mind to help figure out the codes in which enemy messages were written. The work done by the code breakers helped end the war more quickly.

Cipher math

A cipher is a system of changing letters in a message to make it secret. Math is often used to create these codes. For example, you could replace a letter with one that appears five letters earlier in the alphabet. Joan worked on very complicated ciphers during World War II.

Enigma code

Dangerous secrets

Cracking codes helped the British navy find out the location of dangerous enemy submarines-and avoid them.

Enemy codes were made using a clever machine called Enigma. They simply typed in a message, and the machine turned it into an extremely complex code. Eventually, a special computer was built at Bletchley Park, which cracked the Enigma code.

Cipher wheel

A cipher is a code for sending secret messages. You can make one using a cipher wheel, which converts words into a cryptic sequence of numbers...

2
Now make the inner layer by copying this onto a smaller circle of cardboard. The numbers 1-26 are written around the outside.

Place the smaller circle in the center of the larger one. Push the brad through both circles, into a piece of sticky tack on a surface. Bend back the legs of the brad to secure it.
3

To create a new cipher, move the wheels so that the numbers match up with different letters. You can make 26 codes!

How to use it

1) Move the inside wheel to a new position
2) Find the numbers to go with each letter in your message, and write them down.
3) Pass the cipher wheel to a friend, along with the message.
4) Challenge your friend to decode (figure out) what you've written!
$124419 \quad 26191974$ $\begin{array}{llllllll}15 & 11 & 26 & 24 & 14 & 20 & 18 & 4\end{array}$ (Meet at the playhouse)

This cipher uses the number 26 as the letter a.

You have two balls.

Adding
Adding is when you put numbers or things together to make a larger number or larger group of things.

You get three more balls. How many balls are there altogether?

You can show this as an addition calculation.

This symbol means added to or plus.

Number lines

0
1

2

Arranging numbers in order along a line helps you add and subtract. Use a finger to find the first number in your calculation. To add a number, use your finger to count that amount to the right. To subtract a number, count that amount to the left.

To add three to two, move three to the right from two.

5

$$
2+3=5
$$

Subtracting

Subtracting is when you take away a number or part of a group of things to leave a smaller number or group.

$$
4-2=2
$$

To make the flamingo's body, fold a piece of cardboard in half. Draw the outline of half a flamingo (as below) at the folded edge. Cut along the outline, through both halves of the cardboard.

Fold over the top to make the flamingo's head. Use a marker to give your flamingo a beak, eyes, and feathers.

2

Get creative with feather patterns on your bird's wings.

10+ colored beads

What are number bonds?

The pairs of numbers you can add together to make a specific number are called number bonds. The number four has three number bond pairs. Can you find the number bonds for 15 ?

Now try...

You could make other animals to find the number bonds for different amounts. Try making one that fits 30 beads to learn the number bonds of 30 !

Bend a pipe cleaner in half, and tape it to the inside of the flamingo to make its legs. Fold the ends of the pipe cleaner into feet.

Using 10 beads in total, try out different amounts of beads on each leg until you find all the number bonds of 10 ! How many pairs can you find?

Make your own

currency

Currency usually comes in coins and bills. Create differently shaped coins out of thick colored paper. Make differently sized rectangles for the bills.

Around the world, people use different currencies as money to buy and sell things. What currency do you use? Each one has its own name, symbol, and value. Now it's your turn to make a currency-and set up a pretend shop to use it! Turn to page 46 to learn how to use money math!

2

Money has symbols on it to show which country and currency it is from. Make up a name and symbol for your currency.

Set up a pretend shop, and "sell" things to your friends. (Just remember to say you want them back after!)

Draw your equation on a grid like the one above. Place the digits in separate columns, with the place value of each digit at the top.

Add the units column together. If the answer has two digits, take the first digit, and add it to the top digit in the tens column.

You can use different mathematical strategies to solve equations. For simpler problems, the number lines on pages 40-41 are a great help!

10

Now try adding up different amounts using column addition!

Multiplication

You can use multiplication to repeat a group and make a new number. It's the same as adding together lots of the same number. So, $\mathbf{2}$ multiplied by $\mathbf{3}$ is the same as $\mathbf{2 + 2 + 2}$. The symbol that means "multiplied by" is " x ".

How many balls?

To find out how many balls there are in a case, you can either count all of the balls or multiply them. You have four columns of two, which means the answer is $2+2+2+2$. This is the same as two multiplied by four, or 2×4.

$$
\begin{gathered}
2 \times 4=8 \\
2+2+2+2=8
\end{gathered}
$$

$6567871 \times 0=0$

Multiplying by 0

Multiplying by zero is easy! Zero means nothing. If two multiplied by nothing is the same as nothing + nothing, then the answer is nothing. In fact, any number multiplied by zero is zero. Try it on a calculator, with the biggest number you can type.

$12343 \times 1=12343$

Multiplying by 1

Anything multiplied by one is the same number again. This means that the product (the outcome of multiplying) of one and any number is that number. What's the biggest number you can think of? Multiply it by one-

Two times table

$$
\begin{array}{r}
1 \times 2=2 \\
2 \times 2=4 \\
3 \times 2=6 \\
4 \times 2=8 \\
5 \times 2=10 \\
6 \times 2=12 \\
7 \times 2=14 \\
8 \times 2=16 \\
9 \times 2=18 \\
10 \times 2=20 \\
11 \times 2=22 \\
12 \times 2=24
\end{array}
$$

$$
\begin{aligned}
& 1 \times 6=6 \\
& 2 \times 6=12
\end{aligned} \quad \begin{gathered}
\text { the number you're } \\
\text { multiplying } 11 \text { by. So } \\
1 \times 11 \text { is } 11 ; 2 \times 11 \\
\text { is } 22 ; \text { and so on! }
\end{gathered}
$$

$$
3 \times 6=18
$$

$$
4 \times 6=24
$$

$$
5 \times 6=30
$$

$$
6 \times 6=36
$$

$$
7 \times 6=42
$$

$$
8 \times 6=48
$$

$$
9 \times 6=54
$$

$$
10 \times 6=60
$$

$$
11 \times 6=66
$$

$$
12 \times 6=72
$$

For the first nine numbers in the 11 times table, repeat
is 22 ; and so on!

Times tables

Another way of saying "multiplied by" is to say "times." So, " 4×5 " can be said as "four times five." A times table contains around the first 12 answers you get from multiplying a number, starting from that number times one. Find the times tables for the numbers one to 12 at the front and back of this book.

Area

The size of a space is called its area. Multiplication can be used to find out area by multiplying the length and the width of a space. Area is given in squared units, which are shown with a^{2} next to them.

$20 \mathrm{ft} \times 33 \mathrm{ft}=660 \mathrm{ft}^{2}$
 ($6 \mathrm{~m} \times 10 \mathrm{~m}=60 \mathrm{~m}^{2}$)

Roll the clay into a long thin line. Place it beside the ruler, and divide it into 16 chunks measuring 0.5 in (1 cm) each.

Dividing

clay

Learn to divide up clay evenly, then make beads in different shapes. Follow the steps in this activity, and you'll end up with a piece of beautiful jewelry to wear or give as a gift.

Repeated subtraction

Division is like subtracting the same amount many times. For example, let's try 12 divided by 3. You start by subtracting the second number in the problem from the first...

The number of times you subtracted is the answer to the problem.

$$
12 \div 3=4
$$

Division vs. multiplication

Division is the opposite of multiplication. If two numbers multiply to give another, then that number divided by each of the other numbers will give you the leftover number in the equation. We call such numbers opposite operators.

Can you guess the answer to 56 divided by 8 ?

Dividing by one

You can already divide by one, because any number divided by one is itself! It's the same as saying you want to share 10 balls with yourself-you get all 10. What's the biggest number you can think of? Divide it by one-you get the same number again.
0000090^{08}

Engine

Out and about

Next time you leave your home, look around with a mathematician's eye. You might notice an unusually shaped building or a symmetrical leaf. Natural objects can also inspire crafts that help you remember math facts.

Buildings

from your own home to churches and museums, buildings of all shapes and sizes are everywhere you look. Architects, who come up with ideas for buildings, use measurements and shapes to design them. Math is also what holds a building up! The strength and size of each part has to be figured out.

Look for shapes

Buildings can have many differently shaped parts.
Roofs are often triangular to help rain run off them. Rectangular bricks fit together without any holes between them. What shapes does your home have?

Pont du Gard, France

Hagia Sophia, Turkey

Measurements

We use measurements to make sure things are the correct size. When planning buildings, you must do measurements very carefully, with no mistakes. If you use the wrong measurement, then a door might not fit in its frame, and there could be gaps between walls!

Architecture

Architects use their imaginations to dream up new buildings. They think about what the building will be used for, and how it will fit into the surrounding area. They create detailed drawings to show the building's lines and angles, along with each measurement. Engineers use this plan to make the building.

Architectural drawings

Building plans are carefully checked.

Engineering

Turning a drawing into reality is a big task. Engineers use math to turn plans into buildings. The calculations they have to do along the way include finding the amount of material they'll need to build the walls. They also need to make a strong foundation underneath the building that will hold it up.

Zaha
 Hadid

Architect and designer • 1950-2016 • From Iraq
Zaha Hadid created fantastically shaped buildings and structures in many different countries. Her designs included lots of curves and round shapes. She became one of the most well-known architects in the world and won lots of awards for her work.

Architects and buildings

Architects think about what the building will be used for, as well as how to make it look good. Many of Zaha's ideas and projects were unique and eye-catching, so she was asked to design important buildings, such as the center that housed the swimming pool for the 2012 Olympic Games in London, England.

Lots to do

Zaha spent a lot of time teaching architecture at universities. She also worked as a designer for furniture, rooms, and film sets. She used shapes in interesting ways throughout her work.

Wave-like effects can be spotted in much of Zaha's work.

Imagine a 3-D shape unfolding into a flat shape.
This is called the shape's net. Use the nets on pages 62-65 to make building blocks for your own city. You could make all the differently shaped buildings you see in a real city-including homes, schools, museums, and much more!

Trace a net from the following pages onto cardboard, and carefully cut it out with scissors.

Combine different nets to make a variety of buildings for your city.

To find the cone net, turn to pages 64-65.

A Möbius loop is a shape with only one

 side and one edge. follow the steps on these pages to make a paper version. Trace your finger along the single side-it goes on forever!

A wide, see-through cuboid container

painwate

with in your ($\mathrm{cm} \mathrm{m}_{\text {m }}$. finches in

You of the raiment the the ne next much rain
could rain water Then next mind rain

Place the containers outside your home. Make sure they're not under shelter, or the rain won't reach them.

The containers need to be cuboid in shape.

There will be more or less water depending on the weather.

The water will reach the same height in each container.

After a month, measure the height of the water in both containers using a ruler. This amount is the month's rainfall.

Use the calculation in the box below to figure out the volume of water in each container. A container with a larger base will collect a larger volume of rain!

Calculating volume
The volume of liquid in a cuboid container is calculated using three measurements-height, width, and length. Multiply these measurements together using a calculator. We measure volume in cubed measurements, shown with a small " ${ }^{3 \prime}$ " after them.

A mirror without a frame

Natural

 symmetryLook closely at something in nature, and you might see that one side is repeated in the other, but flipped around. This is called symmetry. A line of symmetry is the imaginary line that divides an object into two symmetrical parts. Use a mirror to find symmetry in these pictures.

You can use a mirror to find out if an object has a line of symmetry by seeing if the reflection looks like the opposite side. If this happens only once, it has one line of symmetry.

This butterfly has one line of symmetry.

Original face

Left symmetry

Right symmetry

Now try...

Collect your own objects, and test to see how many lines of symmetry they have. Are there particular types of flowers or plants that have more than one line of symmetry?

Some objects don't have sides that repeat in the same way as symmetrical items. This means there are no lines of symmetry. The patterns on either side are unique!
 shell to see how the reflections look different.

Rotating

starfish

Rotate this book and you can see it change position. However, some shapes look the same when they're rotated. They have what we call rotational symmetry. The number of positions in which a shape looks the same is called its order of rotational symmetry.

Place the pink starfish on top of the outline on the white sheet of paper. Hold the starfish down by pressing a pencil into the middle.

Now try...

Many shapes have rotational symmetry. Use the same steps from the activity to find out the order of rotational symmetry for a square, equilateral triangle, and hexagon.

1

Pour some sand into a tray. Shake it to make sure the sand is level and flat. The sand should cover the bottom of the tray completely.

Nature

array

How can rows and columns be used to do multiplication? A group of things organized into rows and columns is called an array. Make a nature array to help you with multiplication.

Array multiplication

We can use the rows and columns in an array to find out multiplication sums. In the array below, there are five trays in each column, and three in each row. This is the same as five trays times three. Counting the trays gives us 15 , which means $5 \times 3=15$.

There is a book in the tray in the third column on the second row. Having the trays in an array allows us to describe how to find them more easily.

3
Use your paintbrush to draw three more lines in the sand. They should go across the ones you've already made.

Count up the items to find the answer to 4×3.

Distance

Directions

Minutes

There are 60 seconds in a minute. You might use minutes to measure the length of a TV show, or a short walk within your neighborhood. How many minutes does it take to get home from your local park?

Seconds

This is one of the smallest lengths of time. Can you say the word "alligator," "battleship," or "Mississippi"? It takes roughly one second to say each of these words. You probably count in seconds when you play hide-and-seek.

Time

Time is the measurement of how long it takes for things to happen. We measure time in all kinds of units, from tiny seconds to

The large hand moves between the minute lines to show a minute passing.

Some clocks have an extra, skinnier hand that ticks forward once a second.
 long years. Take a few minutes to read all about

time across the next four pages.

Telling the time

We record how much time has passed in a day using clocks. The 12 hours in the morning (a.m.) and after noon (p.m.) are written around the outside.

Digital time

Phones and computer screens show digital clocks. These present the time as numbers. The hour is written first, followed by a colon (:), and then the minutes past the hour.

The 24 hours of were invented, some people used the position of the sun in the sky to tell the time. the day start at midnight. This is shown as 00:00 on a 24 -hour clock.

11:00

This digital clock
shows 52 minutes
past nine.

On a 24 -hour clock, eight o'clock would be 08:00 in the morning, or 20:00 in the evening.

08:00

19:00

07:00

12 hour or 24 hour?

Some people use a 24 -hour clock to tell the time. Rather than having a.m. and p.m. times, these clocks count every hour in the day.

Days, weeks, and months

There are seven days in a week. Months are $28,29,30$, or 31 days long. We record longer passages of time on a calendar.

Each column has a day of the

One calendar page shows a month. week at the top. The dates in that column all fall on that day.

October

Sunday		Monday		Tuesday		Wednesday			Thursday	Friday	Saturday
				1	2	3					
4	5	6	7	8	9	10					
11	12	13	14	15	16	17					
18	19	20	21	22	23	24					
25	26	27	28	29	30	31					

Years

A year is 12 months long. This is the time it takes for the Earth to go all the way around the sun. We measure our age in years-how old are you?

3

Hold the helicopter level with the top of your head, and drop it. Count how many seconds it takes to fall.

Let's learn how to measure distance using a high-speed competition between toy cars. Gather some friends, pick your cars, and follow the steps on these pages. The one that goes the farthest wins!

Decimals

Decimals are a way of showing numbers smaller than one. We
 write them after a decimal point, which looks just like a period.

The decimal point

Any number that comes after a decimal point is smaller than one. This is called a decimal number. The farther away a digit is from the point, the smaller it is. Everything to the left of the point is a whole number.

Decimal point
 1.25

Whole numbers
Decimal numbers

Tenths, hundredths, and thousandths

If you divide one by 10, you get one-tenth, which is written as 0.1 as a decimal. Dividing one by 100 gives you one-hundredth, or 0.01 , and dividing it by 1,000 gives you one-thousandth, or 0.001 .

There are 1,000 thousandths in one, and 10 in each hundredth. Thousandths are the third digit in a decimal number, such as the 1 in 0.551 .

Money

We often use decimals in real life when we use money to buy or sell things. Many currencies (types of money) are whole amounts and decimals.

Each cent (ζ) is one-hundredth of a dollar (\$).

Time

Sometimes we need to measure time very precisely, for example to find out who won a very close race. Tiny fractions of time are shown as decimals on stopwatches.

$=\$ 1.45$

Decimals and fractions

Fractions are another way to write numbers smaller than one. Any decimal can also be written as a fraction, and vice versa. To get the decimal version of a fraction, use a calculator to divide the top number by the bottom number.

Line types

Different types of lines include horizontal (running left to right), vertical (running top to bottom), and diagonal (running on a slant). These can be perpendicular (meeting one another) or parallel (running alongside one another).

Make sure the sides aren't too shallow

1

Make a

 marble runEverywhere you look, you'll see lines. There are lots of different types, which you'll soon learn to recognize. These lines interact in different waysthey might sit opposite each other or form a corner. Try making a marble run that shows off them all!

Measure the box's width. Cut strips out of the remaining cardboard that are 1 in (3 cm) shorter than this measurement.

Glue one final strip horizontally, parallel to the bottom.

5
Let the marbles go from the top, and watch them fall! You now have a marble run showing different types of line, and their interactions.

Perpendicular line

Gladys
 West

Mathematician • Born in 1930 • From the United States

Gladys West realized as a young girl that she didn't want to work on her parents' farm. Instead, she chose to study math and science. Her calculations and discoveries help millions of us navigate the world each day using a digital map system called GPS (Global Positioning System).

Astronomical Gladys

Gladys studied lots of data collected by satellites, which are unpiloted spacecraft orbiting (circling) Earth. She also gathered information about planets and objects in space. One of Gladys's discoveries was the connection between how the dwarf planet Pluto and the planet Neptune move.

Computer wizardry

Gladys did lots of calculations by hand, as well as using early computers. She would program room-sized "supercomputers" to find out the location of oceans and other places on Earth. All of this programming helped develop GPS, which is used all over the world today.

"When you're

 working every day, you're not thinking, 'What impact is this going to have on the world?' You're thinking, 'I've got to get this right."'
Pinpointing location

There are satellites in orbit above you now! Satellites send out signals, which tell computers on Earth-such as smartphones and tablets-how far away they are. Using this information, the computer can calculate its location exactly.

Celebrating Gladys

Gladys wasn't rewarded for her important work for many years. However, her work was recently rediscovered. She's now in the United States Air Force Hall of Fame!

Picture

You can use math to describe pictures very precisely. This means you could help someone create a design without showing them a picture to copy. All you need is a set of precise instructions-an algorithm-to describe the picture.

Draw a picture on the graph paper, keeping to the outlines of the squares.

* Start at the arrow.
* Draw a line forwara for three squares.
* Turn right.
* Draw a line forwara for five squares.
* Turn right.

Now try...

For more advanced drawings, you could use angles to describe the turns. For example, to start a diagonal line, you could say, "Turn 45 degrees to the right, then move forward..." Find out about angles on page 134.

Measure

 a circle
How do you measure the outside

 of a circle? A ruler on its own just won't do. You can find the distance around a small wheel by marking an arrow and taking it for a spin.
Circular measurements

When it comes to circles, there are three main measurements. The diameter is the distance from one side to the other. The radius is the distance from the middle to the outside, which is half the diameter. The circumference is around the outside.

Create a wheel from cardboard by drawing around the base of a bowl and cutting out the shape.

Carefully cut out the circle.

Draw a small arrow somewhere around the outside.

Place a ball of sticky tack beneath the center of the wheel, on a hard surface. Carefully push a pencil through into the sticky tack. Keep the pencil in place.

Around the home

If you're reading this at home, how big is the room in which you're sitting? You'll need to use mathematical skills to measure it. There's probably math elsewhere around you, too. Think about patterns, calendars, and growing plants.

Copy this grid onto 12 sheets of cardboard, showing the days of the week at the top of each column. Write a different month at the top of each sheet.

Make a calendar

You can track time using a calendar. It shows the current day of the week and the month of the year. It also helps you remember important dates, such as birthdays. Follow the steps on these pages to make your very own calendar!

Ask an adult to help you find a calendar on the internet, to learn the dates for each month of the coming year. Write each date in the correct box, in the column showing its day of the week.

Many household objects can be used as stamps. For example, you can cut sponges or paper into any shapes you want. Find some objects to use as stamps.

Paper-towel roll

Carefully dip your stamps in fabric paint, and try out different patterns on a piece of paper. Once you've decided which patterns you like, you're ready to print them on an old T-shirt.

Printing

patterns

Mathematicians often look out for patterns, or when things are repeated in a sequence. Some patterns are made up of shapes. Try making your own patterns to put on a T-shirt! paper

Measure all the walls in your room using measuring tape. Write down the measurements of each wall.

To learn more about measurements, turn to pages 22-23.

Draw the shape of your room on graph paper, using one square to show 3 ft (roughly 1 m) of wall. Round up or down if the wall is too short or long to fit neatly into the squares.

A 9 ft (about 3 m) wall would be three squares long.

Create a floor plan

It's useful to know how much space there is in your room in case you want to rearrange your furniture. Your bed might not fit against your shortest wall! A floor plan shows a room's area.
follow these steps to make a plan of your room.

Write the measurement beside each wall. Find the perimeter (the total length of the walls) by adding together the wall lengths.

Perimeter $=66 \mathrm{ft}$

(22 m)

Find the area. If your room is a rectangle, such as a square, multiply the length by the width. If the room isn't rectangular, divide it into rectangles. Then find the area for each section, and add the answers together.

Benjamin Banneker

Polymath • 1731-1806 • From the United States

Benjamin Banneker was a polymath, which means someone who knows about lots of subjects! He was excellent at learning things by himself, rather than at school. Through a love of reading, he taught himself about mathematics, astronomy (the study of natural objects in space), history, and even how to make clocks.

Timekeeper

Once, Benjamin saw a pocket watch and decided to create one himself, from scratch. As a young man, he carved gears from wood and put a much larger clock together. It was incredibly accurate and worked for the rest of his life. It was one of the first of its kind in America but was destroyed in a fire on the day of Benjamin's funeral.

A solar eclipse is when the moon blocks out the sun.

Written in the stars

Benjamin became a keen astronomer after being shown a telescope, which is an instrument for looking at things a long way away. He learned astronomy and wrote books filled with calculations and diagrams (drawings) showing the position of the stars. He used his findings to correctly predict a solar eclipse in 1789-something which many astronomers didn't see coming.

The lay of the land

Benjamin did important work as a surveyor, which is someone who measures land. He was asked to join the team working on a new American city called Washington D.C., which would be the country's capital! He used astronomy to provide information about the area and help plan where things should go in the city.

"The color of the skin is in no way connected with strength of the mind."

Copy the graph below.
At the end of each week, you'll add an x mark to show the height of your sunflower.

2
Follow the instructions on a packet of sunflower seeds to plant your seed.

Sunflower
 size

Sunflowers can grow very tall-maybe even taller than you! If you measure a sunflower regularly, you can keep track of how tall it is and figure out how fast it is growing. A scatter graph is an easy way to show this information.

Treasure map coordinates

You can use mathematical skills to make a treasure map! follow the steps on these pages to create a map, plan a treasure hunt, and use coordinates to mark where the clues and treasure are.

Draw x - and y-axes near the edges of your paper. Add letters to the x-axis and numbers to the y-axis, starting at the bottom. Then, draw the outline of your room.

Draw furniture and other things in the room on the map. Make sure these match up with where they are in real life.

2

Map coordinates

On a map, the x-axis and y-axis make it easy to plot a point. For the x-coordinate, trace down with your finger until you hit a letter on the x-axis. For the y-coordinate, trace along with your finger until you hit a number on the y-axis.

Axes can show letters or numbers.

Decide where you're going to hide the treasure, and write these coordinates on the final clue.

final clue C, 3

Wrap up your treasure in a box, and hide it at the location in the final clue. Make sure it's well hidden, or it might be found early!

Computer math

Computers follow instructions in order to do different things, such as showing words or colors on a screen. These instructions are called computer code. Just like humans, computers can follow instructions in different languages.

Coding languages

Languages for computers are called programming languages. These have their own rules, so the instructions are written in different ways.

Mathematical symbols such as ">" (less than) might be part of code.

> if (score >5) \{ showWinnerScreen ()

$$
\begin{gathered}
\text { else \{ }
\end{gathered}
$$

showGameOverScreen ()

This is an example of the computer language Java.

Some instructions are written as they might be for a human, but without spaces.

Algorithms

A set of instructions is called an algorithm. Like a recipe, it tells the computer how to complete a task. Can you write an algorithm for making a pizza?

1. Add tomato sauce to the base.

2. Add grated cheese to the base.

3. Bake the pizza.

4. Add basil to the cooked pizza.

True or false?

Computers check whether a statement in their code is true or false. If it is true, then the computer does one thing. If it's false, then it does something different. Let's look at how the coding might work for the end screen of a game. In the game, you play as a unicorn and must collect 10 rainbows in under 30 seconds to win.

The code tells the computer to show a winner screen if your score hits 10 .

If time runs out, and you haven't scored 10, the code tells the computer to show a "Game Over" screen.

Winner

Calculations, calculations

Computers are amazing math tools. They are able to do millions of calculations in a second. The fastest supercomputers in the world can do many billions of calculations in a second!

Supercomputers are much bigger than the computers in homes and schools.

Tomohiro Nishikado

Video game developer • Born in 1944 • From Japan
In video games, computer code makes characters move, adds up scores, allows you to control what is happening in the game, and much, much more! Tomohiro "Tom-Tom" Nishikado invented the code for one of the most popular video games of all time-Space Invaders.

"I had no idea the game would become so popular."

Space Invaders

After working on lots of different video games, Tomohiro started designing Space Invaders in 1977. The player controlled a spaceship that battled aliens, which were attacking it. Tomohiro designed the characters, sounds, and score system.

Gaming math

Making a video game is much easier if you're a math wizard. In addition to writing computer code for the game, you might need to design a scoring system, which uses math to add up points. Designers also have to think about how long the game will run, how fast the graphics (images) will move, and the sizes of characters on screen.

Games, games, games

Tomohiro said he prefers making games to playing them. Although Space Invaders is his most popular game, he's still working in the industry and has made games such as Soccer, a soccer-playing game, and the car-racing game Speed Race.

Top score

In early video games, the score was shown only once, at the end of each game, and then forgotten. Tomohiro changed this with Space Invaders. Scores from every game were stored, and the highest one became the "top score" for other players to beat.

Your
 body

When you weigh yourself or measure your height, you're using math skills. Your body is also a helpful tool for understanding mathematical topicsyou can count using your fingers and make angles with your arms!

Cut a circle out of cardboard. Use a protractor to mark a line every 30° around the top half. Use the straight side of the protractor to draw a line in pencil across the circle from each mark.

Trace either end of each line in pen, going only a short way into the circle. Erase the pencil. Turn over the circle, and repeat steps one and two.

Make your body clock

Your body has an internal clock that changes how you feel throughout the day. For example, you probably feel hungry in the mornings and sleepy at night. Now try making a clock out of cardboard, to show how your body clock affects you.

Hole punch Write the numbers $1-12$ beneath the lines on each side, just as they appear on a clock. On one side, write $a . m$. in the middle; on the other, write p.m.

4

Keep a diary of how you feel and what you do throughout the day, including the time you wake up, when you feel hungry, when you've got lots of energy, when you feel tired, and when you go to sleep!

6 a.m.-9 a.m.
Woke up, feeling much less sleepy than when I went to bed. Hungry for breakfast.

9 a.m.-12 p.m.
Concentrated a lot on work at school. Remembered lots of facts.

12 p.m.-1 p.m.
Felt hungry, had lunch.

1 p.m. -3 p.m.
Felt sleepy after a big meal at lunch. Was less good at P.E. than normal!

- 3 p.m. -5 p.m.

Ran around, was faster than at break time. Didn't feel as tired as earlier.

5 p.m. -6 p.m.
Felt hungry! Dinner time.

- 6 p.m. -7 p.m.

Felt sleepy again.
7 p.m.-6 a.m. I was asleep!

Draw a picture for each of your diary entries in the morning onto the a.m. (before noon) side of your clock. Then add pictures to the p.m. side too.

Through the day

Your internal body clock is usually connected to the sun's light, which changes throughout the day. It helps you follow a routine, so you feel sleepy at night and full of energy in the day. After the 24 hours of the day are up, the clock begins its work again!

Fold the felt in half lengthwise, and mark 11 lines along the edge opposite the fold, one about every 1.5 in (4 cm).

Finger

Every digit in a number has a different place value. Let's make finger puppets for the digits zero to nine and a decimal point. You can use these to form different numbers and become a whiz at recognizing place value.

Turn to pages 13 and 88

to learn about place value and decimal numbers

Write the numbers 0-9 and a decimal point on the puppets.

Place value chart

5

Finger math

Use a puppet on each finger to make a number. Then, look at the chart above to help you figure out the place value of the digits. Try doing this with different numbers. Can you figure out the place values without the chart?

What are statistics?

Gathering information, or data, helps us understand things better. Data can be converted into numbers, known as statistics, which can be displayed in different ways. Here are some statistics on popular pets...

Venn diagram
A clear way to sort data is using a Venn diagram. Each circle represents a category, or group that the animals can be sorted into, with the overlap showing where they fit into more than one category.

Tally chart

Tally charts are a great way to collect data quickly and easily. First, choose a question to ask your friends, then record each answer with a vertical mark beside that option. For every fifth tally mark, you strike through the other four diagonally.

What's your favorite pet?

FAVORITE	TALLY	NUMBER		
Dog	YX XX	10		
Turtle	\|			3
Fish	\|	II	4	
Cat	* Hr $^{\text {c }}$	5		
Pony		1		
Parrot	III			

Data

(1)Ask seven of your friends to tell you their age, height, and shoe size.

discovery

Data is another word for pieces of information. You can use math to describe facts about data by creating summaries called statistics. For example, the average (normal) shoe size for a group of friends is a statistic. Now it's time to find your own statistics!

2
 Find the mean

The mean is a type of average. Calculate the mean height of your friends by adding up all of the heights and dividing the total by the number of friends. It might help to use a calculator.
$41+47+56+49+46$
 in inches

Find the median

The median is another type of average. Calculate the median age of your friends by writing down all of the ages in order from youngest to oldest, and then selecting the one in the very middle of the list.

(4) Find the mode

The mode tells you the most common shoe size-it's another type of average! You can use a tally chart like the one below to figure it out.

Shoe size	Tally	Number of friends
2	I	1
$34^{\text {the mode }}$	IIII	4
3.5	II	2

The shoe size next to the biggest number of friends is the mode.

To find out how age affects height, draw a scatter graph like the one here. Write the ages along the bottom and the height up the side. To plot a friend's height, trace up from their age and across from their height until your fingers meet.

What is correlation?

Correlation is the relationship between data. A positive correlation means that as one data set increases, so does the other. A negative correlation means that as one data set increases, the other decreases. No correlation means that two data sets aren't related.

In hot weather, people eat more ice cream. This is a positive correlation.

In snowy weather, people eat less ice cream. This is a negative correlation.

Owning a dog doesn't make a difference in how much ice cream people eat! This is no correlation. through the middle of the points.

Angles

The size of the turn between

 two lines is an angle. Draw two straight lines that are touching each other at one end. You've just created two angles! There's an angle between the lines and a larger angle around the outside.You can make an angle with your thumb!

Angles less than 90° are called pacute.

45°

There are 360° in a full circle.

Measuring angles

Angles are measured using degrees (${ }^{\circ}$). There are different names for bigger and smaller angles.

Angles between $135^{\circ} \quad 90^{\circ}$ and 180° are called obtuse.
Angles more than 180° are called reflex.

This is the symbol for a right angle.

Right angles

A right angle measures exactly 90°. The four angles in the corners of any rectangle are right angles. You can spot right angles on lots of things-windows, doors, walls, books, and boxes are just a few examples!

Triangles

The name triangle means three angles (tri means three in Latin and Greek). This helps us remember that there are three angles in a triangle. If we add up all the degrees for these, the total is 180°. Try itdraw lots of triangles, use a protractor to measure the angles, and add them up. You'll always get 180°.
50°

$60^{\circ}+60^{\circ}+60^{\circ}=180^{\circ}$

Arm angles

Lift your arms as high as you can. How many angles can you make with them? Start with your hands touching above your head-that's 0°. Then slowly lower them until they are level-you are now at 180°. Can you make a right angle? How about

Did you

 know?
As you've discovered in this book, math isn't just calculations on a page. You can use math to predict weather or solve real-world problems.

Math jobs

There are lots of different jobs you can do that involve working with numbers. Here are just a few.

Astronauts use lots of calculations to pilot spacecraft. To get into space, they need to know the exact direction in which to travel and what their speed should be to safely leave Earth's atmosphere.

Meteorologists measure the temperature, wind speed, and other data about the weather from all over the world. They use this information to help predict whether there'll be lots of sunshine or if a storm is coming!

Investment managers help people invest their money. This means using money to make more moneyfor example, by buying shares (parts of companies) and selling them for more than they cost.

Decision math

Decision math solves a problem. One example is an algorithm that figures out whether you could divide a group into equal parts. The group needs to be an even number to do this. If you kept removing two, you would be left with either one or zero-one means the number is odd, and zero means it's even!

9-2 = 7
Removing two hamsters from nine leaves seven.

7-2 = 5
Removing two hamsters from seven leaves five.

$5-2=3$
Removing two hamsters from five leaves three.

$3-2=1$
Removing two hamsters from three leaves one.

Nine is odd!

Computer numbers

Numbers form instructions in computer code. However, computers use different number systems than humans do. For example, the hexadecimal system uses 16 symbols instead of just the nine Arabic digits we are used to. Hexadecimals are made up of the numbers $0-9$ and the letters $A-F$.

Hexadecimals can be used in code to show colors on-screen. Every color has a different number.

Number systems

The numbers we use in this book are Arabic numerals. Lots of other number systems have been used throughout history and across the world.
Babylonian numerals
Around 4,000 years ago,
the Babylonian people (who
lived in an area which is
now part of Iraq and Syria)
counted up grain and
figured out other amounts
using a system of numbers
called cuneiform numerals.

Hebrew alphabetic

 numeralsThe most commonly used number system in Israel is Arabic. However, numbers that use letters from Hebrew, the Jewish language, are sometimes used for the Hebrew calendar and when numbering a list. These numbers emerged more than 2,200 years ago.

Roman numerals

The ancient Romans began using Latin letters to show different amounts more than 2,000 years ago. This system of numerals was used in Europe for many centuries after the fall of the Roman Empire in 476 ce . It is still used on some clock faces and buildings in Europe today.

Chinese numerals

In China, money and certain other amounts are sometimes written down using Chinese characters. These can be written in different ways by different groups of people, such as people who work for banks.

Glossary
abacus Device used for counting or doing calculations, using beads to show different amounts
algorithm List of steps that tells you how to do something
a.m. Before noon
angle Size of turn between two lines that meet at a vertex (corner)
architecture Art of designing buildings
area Size of the space inside a shape
array Arrangement of objects or numbers into columns and rows
asymmetry When two halves of a shape or object don't perfectly match one another
average Normal amount in a set of data, such as the height that occurs most often in a group of children
bar chart Chart that uses rectangles to show amounts
calculation Something figured out mathematically
calculator Electronic device for doing arithmetic
calendar Tables used to show the days, weeks, and months of a year
cipher Secret code for sending messages
circumference Distance around the outside of a circle
column addition Strategy
for adding together
large numbers

computer code

Instructions telling a computer what to do
coordinate Number or letter from the axes of a graph (or map) used to describe a specific location
correlation Relationship between a set of data

cubed measurement

Measurement of volume, calculated by multiplying together the length, width, and height
currency Coins and bills used in a particular place
data Information, such as numbers
decimal number Part of a whole number that comes after a decimal point
decimal point Point that comes after whole numbers and before decimal numbers
degree Measurement of an angle
denominator Bottom
number in a fraction
diagonal line Line running upward or downward on a slant
diameter Distance through the center of a circle from one side to the other
digit Number from 0-9
distance Measurement of length from one point to another
division Splitting up a number or object into equal smaller amounts
double Multiply an amount by two
edge Line around the outside of a shape
face Surface of a 3-D shape
fraction Part of a whole number or object
half The amount you're left with when you divide an amount into two equal parts
horizontal line flat line

imperial unit

Measurement from the imperial system of measurements, such as an inch (in)
mean Average found by adding together all the numbers in a set of data and dividing the answer by the total amount of numbers in the set
median The middle number in a set of data, when the data is arranged in order
metric unit Measurement from the metric system of measurements, such as a centimeter (cm)
mode The number that occurs most often in a set of data
multiple Number that results from multiplying two numbers together
net Flat shape that can be folded to make a particular 3-D shape
number bond Pair of numbers that can be added to make another number
number line Arrangement of numbers into a line that can be used for adding or subtracting
numerator Top number in a fraction
rotational symmetry
When a shape can be rotated but still look the same
pattern Repeating sequence of numbers or shapes
perimeter Measurement around the outside of a shape
pictogram Graph that uses pictures to show information
pie chart Circular graph showing data as segments
place value Amount shown by a digit in a number
p.m. Time between noon and midnight
probability Likelihood of something happening
protractor Tool used to measure and draw angles
radius Distance from the center of a circle to the outside
rectangle Shape with four straight sides and four right angles
right angle 90° angle
row Arrangement of numbers or items into a line
scatter graph Graph that uses marks arranged between horizontal and vertical axes to show data
sequence Set of numbers or things in a particular order
speed How fast something is going

squared measurement

Measurement of area equal to the length multiplied by the height
statistic Piece of data
symmetry When two
halves of a shape perfectly match each other
tally chart Chart that uses marks to show amounts
tessellation When shapes fit together without gaps

times table Table showing the multiples of a number

unit of measurement

Standard size of a measurement, such as inches or centimeters.

Venn diagram Diagram showing data grouped together in circles
vertex Point where two lines meet to form a corner, for example in a shape or angle
vertical line Line running straight up or down
volume Measurement of liquid or space inside a container
whole number Number
with no fractions or decimals
x-axis Horizontal line used to measure position of marks on a graph
\mathbf{y}-axis Vertical line used to measure position of marks on a graph

Index

12-hour clocks 82
24-hour clocks 82
2-D shapes 26
3-D shapes 26, 27, 28-29, 60-65

Aa

abaci 14-15
acute angles 134,135
adding $15,40,43$,
46-47, 107
age 130,132-133
algorithms 96-97,116
almanacs 109
a.m. $81,82,123,124,125$
amounts 15, 21, 24-25, 40, 43, 45, 52, 57
angles 57, 97, 134-135
anomalies 133
arcade games 118
arches 56
architecture 56-59
area $22,49,106-107$
array multiplication 74
arrays 74-75
astronomy 108, 109
asymmetrical objects 71
averages 130
axes 110-115, 129

Bb

Banneker, Benjamin 108-109
bar charts 129
bills 44, 45
birthdays 83,102

Bletchley Park 36, 37
body clock 122-125
buildings 56-65

Cc

calculators 9, 99, 107
calendars 83,102-103
car racing 86-87
categories 128
Celsius 23
change, money 46
churches 56-57
cipher wheel 38-39
ciphers 37, 38
circles 26, 98-99, 134
circular measurements 98-99
circumference 98,99
Clarke, Joan 36-37
clocks 80-83, 108
clues 113,114
code, computer 116-119
code breaking 36-37
coins 44,45
column addition 46-47
columns 74-75, 128
computers 95, 116-117
cone net 61,65
cones 27, 56
coordinates 112-115
corners 26, 27
correlation 132-133
counting 12-13, 15
cube net 62-63
cubed measurements 69
cubes 27, 28
cuboid nets 62-63, 64-65
cuboids 27,68, 69
currency 44-47, 89
curves 58
cylinder net 62
cylinders 27

Dd

data 128-133
dates 83,102
days 81, 82-83, 102, 125
decimal point 88,126,127
decimals 88-89
degrees 134
depth 69
designs 96-97, 119
diagonal lines 90, 91, 93, 97
diagrams 109
diameter 98
diaries 123,124
die 19
digital clocks 82
digital maps 94-95
directions 94-95
distance, measuring 86-87
division 24, 50-53
dodecahedron net 64
doubling 24, 25

Ee

Earth 83, 95
edges 27, 28
eighths 17
energy 123, 125
engineering 57
Enigma code 37
equal amounts 52
equals sign 40,41
equivalent fractions 17

Ff

faces 27, 28
Fahrenheit 23
falling bodies 84-85
false statements 117
finger puppets 126-127
floor plans 106-107
flowers, times table 76-77
foundations 57
fractions 13, 16-17, 89
fruit smoothie 24-25
furniture 59

Gg

general elections 129
geometry 27
GPS (Global Positioning System) 94-95
graph paper 96-97, 106-107, 110-111, 132-133
graphics 119
growth 110-111

Hh

Hadid, Zaha 58-59
Hagia Sophia (Turkey) 57
halves 17
halving 24, 25
height 22, 69, 110-111, 129, 130-133
helicopters, timing 84-85
hexagonal pyramid net

$$
\text { 61, } 62
$$

hexagons 30-33, 73
Heydar Aliyev Center
(Azerbaijan) 58
horizontal lines 90, 92,93
hours 81, 82-83
human body 120-135
hundredths 88
hunger 122,123

li

imperial units 22-23

Jj

Java 117
Jefferson, Thomas 109 jewelry 50-51

LI

languages, coding 116, 117 length 22,49, 129
less than 12
light 125
lines 57, 90
lines of symmetry 70
liquid 22-23, 68-69
location 95
loops, Möbius 66-67

Mm

maps 94-95, 112-115
marble run 90-93
marshmallow shapes 28-29
materials 57
minutes 80
mirrors 70, 71
Mirzakhani, Maryam 27
Möbius loops 66-67 mode 131
money 41, 44-47, 89
months 83,102,103
more than 12
mosques 56-57
multiplication 24, 48-49,
53, 69, 74-75, 76-77, 107
multiplication sign 48

Nn

natural symmetry 70-71 negative correlation 132
negative numbers 13
Neptune 94
nets, shape 60-65
Nishikado, Tomohiro 118-119
noon $81,124,125$
number bonds 42-43
number lines 40-41

space 94
Space Invaders 118-119
speed 86-87
spheres 27
spires 56
squared measurements 49, 106
squares 26,56,71, 107
stamps 104-105
starfish, rotating 72-73
statements, true or false 117
statistics 128-129, 130-131
stopwatches 89
subtracting $15,40,41$, 46-47, 52
sun $82,83,125$
sunflowers 110-111
supercomputers 95, 116
surveying 109
symmetry 70-73

Tt

T-shirts 104-105 tablets 95
tallies 128, 131
tape measures 106
telescopes 109
temperatures 13, 23
tenths 88
tessellation 30-33
thermometers 23
thousandths 88
three-dimensional shapes
26, 27, 28-29, 60-65
time 23, 80-83,87,
102-103, 108
times tables 49, 76-77
top score 119
treasure maps 112-115
triangles 26, 29, 56, 73, 134
triangular pyramids 29
true statements 117
two times table 49, 77
two-dimensional shapes 26

Vv

Venn diagrams 128-129 vertical lines 90, 93
vertices 27, 28
video games 116-119
volume 22-23,68-69
voting 129

Ww

walls 106-107
Washington, D.C. 109
watches 108, 89
water 68-69
weather 94, 132
weeks 83
weight 20-21, 23, 84-85
West, Gladys 94-95
wheels 100-102
width 49, 69
wings 84

Xx

x-axis 110, 112-113, 132
x-coordinates 113

Acknowledgments

AMI would like to thank the Stemettes team for their patience while she worked on this book. DK would like to thank the following: Polly Goodman for proofreading; Helen Peters for the index; and Eemeli Vuorhovi for his help with the computer coding spread.

The publisher would like to thank the following for their kind permission to reproduce their photographs:
(Key: a-above; b-below/bottom; c-centre; f-far; I-left; r-right; t-top)

4 Dreamstime.com: Liubov Shirokova (br), 8 Dreamstime.com: Exopixel (bl). 13
Dreamstime.com: Mariusz Blach (I); Kostyantine Pankin (crb). $\mathbf{1 6}$ Dorling Kindersley: Rotring UK Ltd (tr). 18 Dorling Kindersley: Rotring UK Ltd (tc). 19 123RF.com: pixelrobot (cra). 20 123RF. com: Anton Starikov (tl). 23 Dreamstime.com: Laralova (bl). Getty Images: Sharon Vos-Arnold (clb). 27 123Rf.com: Aleksanderdn (bl). Alamy Stock Photo: Epa European Pressphoto Agency B.V. (tr). 31 Dreamstime.com: Piotr Pawinski / Ppart (tr). $\mathbf{3 3}$ Dreamstime.com: Waclawmostowski (tr). 34-35 Dreamstime. com: Icefront, 37 Dorling Kindersley: Imperial War Museum, London (tr), 40 Dreamstime.com: Mikhail Kokhanchikov (tI). iStockphoto.com: FatCamera (cb). $\mathbf{4 1}$ Alamy Stock Photo: Sergey Novikov (cb, clb). Dreamstime.com: Mikhail Kokhanchikov (t). 44 Dorling Kindersley: Rotring UK Ltd (tc). 44-45 123RF.com: Ekaterina Bychkova (b). 45 123RF.com: Ekaterina Bychkova (c); Hugo Lacasse (c/yellow). 46-47 123RF.com: Ekaterina Bychkova (c). $\mathbf{4 7}$ 123RF.com: Alexmit (ca). 48 Dreamstime.com: Inkaphotoimage (cr). 49 Dorling Kindersley: Jerry Young (tc). Dreamstime.com: Stefan Hermans / Perrush (tl). 50 Dreamstime.com: Piotr Pawinski / Ppart (tr), 52 123RF.com: Alexmit (ca). Dreamstime. com: Aldo Di Bari Murga / Aldodi (ca/Baseball) 53 123RF.com: Alexmit (cl). Dreamstime.com: Aldo Di Bari Murga / Aldodi (ca); Costasz (tc). 54-55 Dreamstime.com: La Fabrika Pixel S.I. 56 Alamy Stock Photo: Imagenet (b). 57 Alamy Stock Photo: jimmy Villalta / VWPics (tr). Dreamstime.com: Alessandroguerriero (cr); Martinmolcan (tl); Filip Fuxa (cla); Milanmarkovic (bc). 58-59 Alamy Stock Photo: Elnur Amikishiyev (b). 59 Alamy Stock Photo: Arcaid Images (c). $\mathbf{7 0}$ 123RF.com: Liubov Shirokova (fcr). 71 Dreamstime.com: Sofiaworld (fcl). 74 Alamy Stock Photo: Paul Doyle (crb).

Dreamstime.com: Photka (tc). 78-79 123RF. com: Teerachat Aebwanawong. $\mathbf{8 0}$ Dorling Kindersley: Steve Lyne (tc). Dreamstime.com: Svetlana Foote / Saddakol23 (fcla). 81 123RF. com: Brian Kinney (tr). 82 Dreamstime.com: Kidsada Manchinda (cla). $\mathbf{8 3}$ Dreamstime.com: Photka (crb). 84 Dreamstime.com: Ilya Genkin / Igenkin (b). 89 123RF.com: Olga Solovieva (cla) Dreamstime.com: Newlight (bl). 94 Getty Images: Erik Simonsen (bl). 95 123Rf.com: Georgejmclittle (tl). $\mathbf{9 6}$ Dorling Kindersley: Rotring UK Ltd (tc). 100-101 Dreamstime.com: Judgar. 103 Dorling Kindersley: Stephen Oliver (tc). 109 123RF.com: Solarseven (tl). Alamy Stock Photo: FLHC 96 (cr); Science History Images (bc). 110 Dreamstime.com: Dijarm (l). 111 Dreamstime.com: Dijarm (bl); Firina (r). 112 Dorling Kindersley: Rotring UK Ltd (tr). 117 Alamy Stock Photo: Thomas Imo (bl). 118 Alamy Stock Photo: Mark Murphy (clb). 119 Dreamstime.com: Radistmorze (crb). Getty Images: Lluis Gene / AFP (tr). 120-121 123RF. com: belchonock. 122 Dorling Kindersley: Rotring UK Ltd (tr). Dreamstime.com: Exopixel (cla, tc). $\mathbf{1 2 3}$ Dorling Kindersley: Stephen Oliver
(tc). 124 123RF.com: rawpixel (c). Depositphotos Inc: Helen_F (ca). 125
Dreamstime.com: Frenta (c); Ramona Kaulitzki (c/Moon and stars). 128 123Rf.com: Marigranula (crb). 128-129 Fotolia: Eric Isselee (cb). $\mathbf{1 2 9}$ 123RF.com: Marigranula (ca). Alamy Stock Photo: Stephen Barnes / Politics (br). Fotolia: Eric Isselee (cla). 132 Dreamstime.com: Dijarm (tl). 133 Dreamstime.com: Dijarm (b). 134 Dreamstime.com: Torsakarin (tc). 135 Dreamstime.com: Jose Manuel Gelpi Diaz (tr). 136 Dreamstime.com: Ken Cole (bl); Monkey Business Images / Monkeybusinessimages (clb); Ion Adrian Popa (r). Getty Images: Stocktrek Images (clb/storm). NASA: Tony Gray and Tom Farrar (cl). $\mathbf{1 4 0}$ Dorling Kindersley: Imperial War Museum, London (bl)

All other images © Dorling Kindersley For further information see: www.dkimages.com

